Elastic net model paths for some generalized linear models
This package fits lasso and elastic-net model paths for regression, logistic and multinomial regression using coordinate descent. The algorithm is extremely fast, and exploits sparsity in the input x matrix where it exists. A variety of predictions can be made from the fitted models.
Package: | glmnet |
Type: | Package |
Version: | 1.0 |
Date: | 2008-05-14 |
License: | What license is it under? |
Very simple to use. Accepts x,y
data for regression models, and
produces the regularization path over a grid of values for the tuning
parameter lambda
. Only 5 functions: glmnet
predict.glmnet
plot.glmnet
print.glmnet
coef.glmnet
Jerome Friedman, Trevor Hastie and Rob Tibshirani
Maintainer:
Trevor Hastie hastie@stanford.edu
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
Regularization Paths for Generalized Linear Models via Coordinate
Descent, https://web.stanford.edu/~hastie/Papers/glmnet.pdf
Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
https://www.jstatsoft.org/v33/i01/
Simon, N., Friedman, J., Hastie,
T., Tibshirani, R. (2011) Regularization Paths for Cox's Proportional
Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol.
39(5) 1-13
https://www.jstatsoft.org/v39/i05/
Tibshirani,
Robert., Bien, J., Friedman, J.,Hastie, T.,Simon, N.,Taylor, J. and
Tibshirani, Ryan. (2012) Strong Rules for Discarding Predictors in
Lasso-type Problems, JRSSB, vol 74,
https://statweb.stanford.edu/~tibs/ftp/strong.pdf
Glmnet webpage with four vignettes
https://glmnet.stanford.edu
x = matrix(rnorm(100 * 20), 100, 20) y = rnorm(100) g2 = sample(1:2, 100, replace = TRUE) g4 = sample(1:4, 100, replace = TRUE) fit1 = glmnet(x, y) predict(fit1, newx = x[1:5, ], s = c(0.01, 0.005)) predict(fit1, type = "coef") plot(fit1, xvar = "lambda") fit2 = glmnet(x, g2, family = "binomial") predict(fit2, type = "response", newx = x[2:5, ]) predict(fit2, type = "nonzero") fit3 = glmnet(x, g4, family = "multinomial") predict(fit3, newx = x[1:3, ], type = "response", s = 0.01)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.