make predictions from a "cv.glmnet" object.
This function makes predictions from a cross-validated glmnet model, using
the stored "glmnet.fit"
object, and the optimal value chosen for
lambda
(and gamma
for a 'relaxed' fit.
## S3 method for class 'cv.glmnet' predict(object, newx, s = c("lambda.1se", "lambda.min"), ...) ## S3 method for class 'cv.relaxed' predict( object, newx, s = c("lambda.1se", "lambda.min"), gamma = c("gamma.1se", "gamma.min"), ... )
object |
Fitted |
newx |
Matrix of new values for |
s |
Value(s) of the penalty parameter |
... |
Not used. Other arguments to predict. |
gamma |
Value (single) of 'gamma' at which predictions are to be made |
This function makes it easier to use the results of cross-validation to make a prediction.
The object returned depends on the ... argument which is passed
on to the predict
method for glmnet
objects.
Jerome Friedman, Trevor Hastie and Rob Tibshirani
Maintainer:
Trevor Hastie hastie@stanford.edu
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
Regularization Paths for Generalized Linear Models via Coordinate
Descent, Journal of Statistical Software, Vol. 33, Issue 1, Feb 2010
https://www.jstatsoft.org/v33/i01/
https://arxiv.org/abs/1707.08692
Hastie, T., Tibshirani, Robert,
Tibshirani, Ryan (2019) Extended Comparisons of Best Subset Selection,
Forward Stepwise Selection, and the Lasso
glmnet
, and print
, and coef
methods, and
cv.glmnet
.
x = matrix(rnorm(100 * 20), 100, 20) y = rnorm(100) cv.fit = cv.glmnet(x, y) predict(cv.fit, newx = x[1:5, ]) coef(cv.fit) coef(cv.fit, s = "lambda.min") predict(cv.fit, newx = x[1:5, ], s = c(0.001, 0.002)) cv.fitr = cv.glmnet(x, y, relax = TRUE) predict(cv.fit, newx = x[1:5, ]) coef(cv.fit) coef(cv.fit, s = "lambda.min", gamma = "gamma.min") predict(cv.fit, newx = x[1:5, ], s = c(0.001, 0.002), gamma = "gamma.min")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.