GLS fitting of variogram parameters
Fits variogram parameters (nugget, sill, range) to variogram cloud, using GLS (generalized least squares) fitting. Only for direct variograms.
fit.variogram.gls(formula, data, model, maxiter = 30, eps = .01, trace = TRUE, ignoreInitial = TRUE, cutoff = Inf, plot = FALSE)
formula |
formula defining the response vector and (possible)
regressors; in case of absence of regressors, use e.g. |
data |
object of class Spatial |
model |
variogram model to be fitted, output of |
maxiter |
maximum number of iterations |
eps |
convergence criterium |
trace |
logical; if TRUE, prints parameter trace |
ignoreInitial |
logical;
if FALSE, initial parameter are taken from model;
if TRUE, initial values of model are
ignored and taken from variogram cloud:
nugget: |
cutoff |
maximum distance up to which point pairs are taken into consideration |
plot |
logical; if TRUE, a plot is returned with variogram cloud and fitted model; else, the fitted model is returned. |
an object of class "variogramModel"; see fit.variogram; if
plot
is TRUE, a plot is returned instead.
Inspired by the code of Mihael Drinovac, which was again inspired by code from Ernst Glatzer, author of package vardiag.
Edzer Pebesma
Mueller, W.G., 1999: Least-squares fitting from the variogram cloud. Statistics \& Probability Letters, 43, 93-98.
Mueller, W.G., 2007: Collecting Spatial Data. Springer, Heidelberg.
library(sp) data(meuse) coordinates(meuse) = ~x+y ## Not run: fit.variogram.gls(log(zinc)~1, meuse[1:40,], vgm(1, "Sph", 900,1)) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.