Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

wind

Ireland wind data, 1961-1978


Description

Daily average wind speeds for 1961-1978 at 12 synoptic meteorological stations in the Republic of Ireland (Haslett and raftery 1989). Wind speeds are in knots (1 knot = 0.5418 m/s), at each of the stations in the order given in Fig.4 of Haslett and Raftery (1989, see below)

Usage

data(wind)

Format

data.frame wind contains the following columns:

year

year, minus 1900

month

month (number) of the year

day

day

RPT

average wind speed in knots at station RPT

VAL

average wind speed in knots at station VAL

ROS

average wind speed in knots at station ROS

KIL

average wind speed in knots at station KIL

SHA

average wind speed in knots at station SHA

BIR

average wind speed in knots at station BIR

DUB

average wind speed in knots at station DUB

CLA

average wind speed in knots at station CLA

MUL

average wind speed in knots at station MUL

CLO

average wind speed in knots at station CLO

BEL

average wind speed in knots at station BEL

MAL

average wind speed in knots at station MAL

data.frame wind.loc contains the following columns:

Station

Station name

Code

Station code

Latitude

Latitude, in DMS, see examples below

Longitude

Longitude, in DMS, see examples below

MeanWind

mean wind for each station, metres per second

Note

This data set comes with the following message: “Be aware that the dataset is 532494 bytes long (thats over half a Megabyte). Please be sure you want the data before you request it.”

The data were obtained on Oct 12, 2008, from: http://www.stat.washington.edu/raftery/software.html The data are also available from statlib.

Locations of 11 of the stations (ROS, Rosslare has been thrown out because it fits poorly the spatial correlations of the other stations) were obtained from: http://www.stat.washington.edu/research/reports/2005/tr475.pdf

Roslare lat/lon was obtained from google maps, location Roslare. The mean wind value for Roslare comes from Fig. 1 in the original paper.

Haslett and Raftery proposed to use a sqrt-transform to stabilize the variance.

Author(s)

Adrian Raftery; imported to R by Edzer Pebesma

References

These data were analyzed in detail in the following article:

Haslett, J. and Raftery, A. E. (1989). Space-time Modelling with Long-memory Dependence: Assessing Ireland's Wind Power Resource (with Discussion). Applied Statistics 38, 1-50.

and in many later papers on space-time analysis, for example:

Tilmann Gneiting, Marc G. Genton, Peter Guttorp: Geostatistical Space-Time Models, Stationarity, Separability and Full symmetry. Ch. 4 in: B. Finkenstaedt, L. Held, V. Isham, Statistical Methods for Spatio-Temporal Systems.

Examples

data(wind)
summary(wind)
wind.loc
library(sp) # char2dms
wind.loc$y = as.numeric(char2dms(as.character(wind.loc[["Latitude"]])))
wind.loc$x = as.numeric(char2dms(as.character(wind.loc[["Longitude"]])))
coordinates(wind.loc) = ~x+y

## Not run: 
# fig 1:
library(maps)
library(mapdata)
map("worldHires", xlim = c(-11,-5.4), ylim = c(51,55.5))
points(wind.loc, pch=16)
text(coordinates(wind.loc), pos=1, label=wind.loc$Station)

## End(Not run)

wind$time = ISOdate(wind$year+1900, wind$month, wind$day)
# time series of e.g. Dublin data:
plot(DUB~time, wind, type= 'l', ylab = "windspeed (knots)", main = "Dublin")

# fig 2:
#wind = wind[!(wind$month == 2 & wind$day == 29),]
wind$jday = as.numeric(format(wind$time, '%j'))
windsqrt = sqrt(0.5148 * as.matrix(wind[4:15]))
Jday = 1:366
windsqrt = windsqrt - mean(windsqrt)
daymeans = sapply(split(windsqrt, wind$jday), mean)
plot(daymeans ~ Jday)
lines(lowess(daymeans ~ Jday, f = 0.1))

# subtract the trend:
meanwind = lowess(daymeans ~ Jday, f = 0.1)$y[wind$jday]
velocity = apply(windsqrt, 2, function(x) { x - meanwind })

# match order of columns in wind to Code in wind.loc:
pts = coordinates(wind.loc[match(names(wind[4:15]), wind.loc$Code),])

# fig 3, but not really yet...
dists = spDists(pts, longlat=TRUE)
corv = cor(velocity)
sel = !(as.vector(dists) == 0)
plot(as.vector(corv[sel]) ~ as.vector(dists[sel]),
	xlim = c(0,500), ylim = c(.4, 1), xlab = "distance (km.)", 
	ylab = "correlation") 
# plots all points twice, ignores zero distance 
# now really get fig 3:
ros = rownames(corv) == "ROS"
dists.nr = dists[!ros,!ros]
corv.nr = corv[!ros,!ros]
sel = !(as.vector(dists.nr) == 0)
plot(as.vector(corv.nr[sel]) ~ as.vector(dists.nr[sel]), pch = 3,
	xlim = c(0,500), ylim = c(.4, 1), xlab = "distance (km.)", 
	ylab = "correlation") 
# add outlier:
points(corv[ros,!ros] ~ dists[ros,!ros], pch=16, cex=.5)
xdiscr = 1:500
# add correlation model:
lines(xdiscr, .968 * exp(- .00134 * xdiscr))

gstat

Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation

v2.0-7
GPL (>= 2.0)
Authors
Edzer Pebesma [aut, cre] (<https://orcid.org/0000-0001-8049-7069>), Benedikt Graeler [aut]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.