Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

h2o.anomaly

Anomaly Detection via H2O Deep Learning Model


Description

Detect anomalies in an H2O dataset using an H2O deep learning model with auto-encoding.

Usage

h2o.anomaly(object, data, per_feature = FALSE)

Arguments

object

An H2OAutoEncoderModel object that represents the model to be used for anomaly detection.

data

An H2OFrame object.

per_feature

Whether to return the per-feature squared reconstruction error

Value

Returns an H2OFrame object containing the reconstruction MSE or the per-feature squared error.

See Also

h2o.deeplearning for making an H2OAutoEncoderModel.

Examples

## Not run: 
library(h2o)
h2o.init()
prostate_path = system.file("extdata", "prostate.csv", package = "h2o")
prostate = h2o.importFile(path = prostate_path)
prostate_dl = h2o.deeplearning(x = 3:9, training_frame = prostate, autoencoder = TRUE,
                               hidden = c(10, 10), epochs = 5)
prostate_anon = h2o.anomaly(prostate_dl, prostate)
head(prostate_anon)
prostate_anon_per_feature = h2o.anomaly(prostate_dl, prostate, per_feature = TRUE)
head(prostate_anon_per_feature)

## End(Not run)

h2o

R Interface for the 'H2O' Scalable Machine Learning Platform

v3.32.1.2
Apache License (== 2.0)
Authors
Erin LeDell [aut, cre], Navdeep Gill [aut], Spencer Aiello [aut], Anqi Fu [aut], Arno Candel [aut], Cliff Click [aut], Tom Kraljevic [aut], Tomas Nykodym [aut], Patrick Aboyoun [aut], Michal Kurka [aut], Michal Malohlava [aut], Ludi Rehak [ctb], Eric Eckstrand [ctb], Brandon Hill [ctb], Sebastian Vidrio [ctb], Surekha Jadhawani [ctb], Amy Wang [ctb], Raymond Peck [ctb], Wendy Wong [ctb], Jan Gorecki [ctb], Matt Dowle [ctb], Yuan Tang [ctb], Lauren DiPerna [ctb], Tomas Fryda [ctb], H2O.ai [cph, fnd]
Initial release
2021-04-29

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.