Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

h2o.deepfeatures

Feature Generation via H2O Deep Learning


Description

Extract the non-linear feature from an H2O data set using an H2O deep learning model.

Usage

h2o.deepfeatures(object, data, layer)

Arguments

object

An H2OModel object that represents the deep learning model to be used for feature extraction.

data

An H2OFrame object.

layer

Index (integer) of the hidden layer to extract

Value

Returns an H2OFrame object with as many features as the number of units in the hidden layer of the specified index.

See Also

h2o.deeplearning for making H2O Deep Learning models.

Examples

## Not run: 
library(h2o)
h2o.init()
prostate_path = system.file("extdata", "prostate.csv", package = "h2o")
prostate = h2o.importFile(path = prostate_path)
prostate_dl = h2o.deeplearning(x = 3:9, y = 2, training_frame = prostate,
                               hidden = c(100, 200), epochs = 5)
prostate_deepfeatures_layer1 = h2o.deepfeatures(prostate_dl, prostate, layer = 1)
prostate_deepfeatures_layer2 = h2o.deepfeatures(prostate_dl, prostate, layer = 2)
head(prostate_deepfeatures_layer1)
head(prostate_deepfeatures_layer2)


## End(Not run)

h2o

R Interface for the 'H2O' Scalable Machine Learning Platform

v3.32.1.2
Apache License (== 2.0)
Authors
Erin LeDell [aut, cre], Navdeep Gill [aut], Spencer Aiello [aut], Anqi Fu [aut], Arno Candel [aut], Cliff Click [aut], Tom Kraljevic [aut], Tomas Nykodym [aut], Patrick Aboyoun [aut], Michal Kurka [aut], Michal Malohlava [aut], Ludi Rehak [ctb], Eric Eckstrand [ctb], Brandon Hill [ctb], Sebastian Vidrio [ctb], Surekha Jadhawani [ctb], Amy Wang [ctb], Raymond Peck [ctb], Wendy Wong [ctb], Jan Gorecki [ctb], Matt Dowle [ctb], Yuan Tang [ctb], Lauren DiPerna [ctb], Tomas Fryda [ctb], H2O.ai [cph, fnd]
Initial release
2021-04-29

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.