Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

h2o.upload_mojo

Imports a MOJO from a local filesystem, creating a Generic model with it.


Description

Usage example: mojo_model <- h2o.upload_mojo(model_file_path = "/path/to/local/mojo.zip") predictions <- h2o.predict(mojo_model, dataset)

Usage

h2o.upload_mojo(mojo_local_file_path)

Arguments

mojo_local_file_path

Filesystem path to the model imported

Value

Returns H2O Generic Model embedding given MOJO model

Examples

## Not run: 

# Import default Iris dataset as H2O frame
data <- as.h2o(iris)

# Train a very simple GBM model
features <- c("Sepal.Length", "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
original_model <- h2o.gbm(x = features, y = "Species", training_frame = data)

# Download the trained GBM model as MOJO (temporary directory used in this example)
mojo_original_name <- h2o.download_mojo(model = original_model, path = tempdir())
mojo_original_path <- paste0(tempdir(), "/", mojo_original_name)

# Upload the MOJO from local filesystem and obtain a Generic model
mojo_model <- h2o.upload_mojo(mojo_original_path)

# Perform scoring with the generic model
predictions  <- h2o.predict(mojo_model, data)

## End(Not run)

h2o

R Interface for the 'H2O' Scalable Machine Learning Platform

v3.32.1.2
Apache License (== 2.0)
Authors
Erin LeDell [aut, cre], Navdeep Gill [aut], Spencer Aiello [aut], Anqi Fu [aut], Arno Candel [aut], Cliff Click [aut], Tom Kraljevic [aut], Tomas Nykodym [aut], Patrick Aboyoun [aut], Michal Kurka [aut], Michal Malohlava [aut], Ludi Rehak [ctb], Eric Eckstrand [ctb], Brandon Hill [ctb], Sebastian Vidrio [ctb], Surekha Jadhawani [ctb], Amy Wang [ctb], Raymond Peck [ctb], Wendy Wong [ctb], Jan Gorecki [ctb], Matt Dowle [ctb], Yuan Tang [ctb], Lauren DiPerna [ctb], Tomas Fryda [ctb], H2O.ai [cph, fnd]
Initial release
2021-04-29

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.