Imputation of missing entries by 0.
This function performs the trivial imputation of missing values by 0
. Is is only used for comparison purposes.
impute.ZERO(dataSet.mvs)
dataSet.mvs |
A data matrix containing left-censored missing data. |
A complete expression data matrix with missing values imputed.
Cosmin Lazar
# generate expression data matrix exprsDataObj = generate.ExpressionData(nSamples1 = 6, nSamples2 = 6, meanSamples = 0, sdSamples = 0.2, nFeatures = 1000, nFeaturesUp = 50, nFeaturesDown = 50, meanDynRange = 20, sdDynRange = 1, meanDiffAbund = 1, sdDiffAbund = 0.2) exprsData = exprsDataObj[[1]] # insert 15% missing data with 100% missing not at random m.THR = quantile(exprsData, probs = 0.15) sd.THR = 0.1 MNAR.rate = 100 exprsData.MD.obj = insertMVs(exprsData,m.THR,sd.THR,MNAR.rate) exprsData.MD = exprsData.MD.obj[[2]] # perform missing data imputation exprsData.imputed = impute.ZERO(exprsData.MD) ## Not run: hist(exprsData[,1]) hist(exprsData.MD[,1]) hist(exprsData.imputed[,1]) ## End(Not run) ## The function is currently defined as function (dataSet.mvs) { dataSet.imputed = dataSet.mvs dataSet.imputed[which(is.na(dataSet.mvs))] = 0 return(dataSet.imputed) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.