SVD-based imputation.
This is a wrapper function that performs SVD-based imputation of missing data. The wrapper is built around the pca
function from the pcaMethods package.
impute.wrapper.SVD(dataSet.mvs, K)
dataSet.mvs |
A data matrix containing left-censored missing data. |
K |
The number of |
A complete expression data matrix with missing values imputed.
Cosmin Lazar
See package pcaMethods
# generate expression data matrix exprsDataObj = generate.ExpressionData(nSamples1 = 6, nSamples2 = 6, meanSamples = 0, sdSamples = 0.2, nFeatures = 1000, nFeaturesUp = 50, nFeaturesDown = 50, meanDynRange = 20, sdDynRange = 1, meanDiffAbund = 1, sdDiffAbund = 0.2) exprsData = exprsDataObj[[1]] # insert 15% missing data with 100% missing not at random m.THR = quantile(exprsData, probs = 0.15) sd.THR = 0.1 MNAR.rate = 100 exprsData.MD.obj = insertMVs(exprsData,m.THR,sd.THR,MNAR.rate) exprsData.MD = exprsData.MD.obj[[2]] # perform missing data imputation exprsData.imputed = impute.wrapper.SVD(exprsData.MD,2) ## Not run: hist(exprsData[,1]) hist(exprsData.MD[,1]) hist(exprsData.imputed[,1]) ## End(Not run) ## The function is currently defined as function (dataSet.mvs, K) { resultSVD = pca(dataSet.mvs, method = "svdImpute", nPcs = K) dataSet.imputed = resultSVD@completeObs return(dataSet.imputed) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.