Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

Rmse

calculate the RMSE or NRMSE


Description

This function calculate imputation error given the imputed data, the missing data and the true data

Usage

Rmse(imp, mis, true, norm = FALSE)

Arguments

imp

the imputaed data matrix

mis

the missing data matrix

true

the true data matrix

norm

logical, if TRUE then the normalized RMSE will be returned

Value

the RMSE or NRMSE

See Also

impute for the main imputation function, mr for the misclassification error metric.

Examples

data(parkinson)
# introduce 10% random missing values into the parkinson data
missdata <- SimIm(parkinson, 0.1)

# impute the missing values by LASSO
impdata <- impute(missdata, lmFun = "lassoR")

# calculate the normalised RMSE for the imputation
Rmse(impdata$imp, missdata, parkinson, norm = TRUE)

imputeR

A General Multivariate Imputation Framework

v2.2
GPL-3
Authors
Steffen Moritz [aut, cre] (<https://orcid.org/0000-0002-0085-1804>), Lingbing Feng [aut], Gen Nowak [ctb], Alan. H. Welsh [ctb], Terry. J. O'Neill [ctb]
Initial release
2020-01-20

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.