Count number of parameters in a model
Returns the number of parameters (coefficients) of a model.
n_parameters(x, ...) ## Default S3 method: n_parameters(x, remove_nonestimable = FALSE, ...) ## S3 method for class 'merMod' n_parameters( x, effects = c("fixed", "random"), remove_nonestimable = FALSE, ... ) ## S3 method for class 'glmmTMB' n_parameters( x, effects = c("fixed", "random"), component = c("all", "conditional", "zi", "zero_inflated"), remove_nonestimable = FALSE, ... ) ## S3 method for class 'zeroinfl' n_parameters( x, component = c("all", "conditional", "zi", "zero_inflated"), remove_nonestimable = FALSE, ... ) ## S3 method for class 'gam' n_parameters( x, component = c("all", "conditional", "smooth_terms"), remove_nonestimable = FALSE, ... ) ## S3 method for class 'brmsfit' n_parameters(x, effects = "all", component = "all", ...)
x |
A statistical model. |
... |
Arguments passed to or from other methods. |
remove_nonestimable |
Logical, if |
effects |
Should number of parameters for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated. |
component |
Should total number of parameters, number parameters for the conditional model, the zero-inflated part of the model, the dispersion term or the instrumental variables be returned? Applies to models with zero-inflated and/or dispersion formula, or to models with instrumental variable (so called fixed-effects regressions). May be abbreviated. |
The number of parameters in the model.
This function returns the number of parameters for the fixed effects
by default, as returned by find_parameters(x, effects = "fixed")
.
It does not include all estimated model parameters, i.e. auxiliary
parameters like sigma or dispersion are not counted. To get the number of
all estimated parameters, use get_df(x, type = "model")
.
data(iris) model <- lm(Sepal.Length ~ Sepal.Width * Species, data = iris) n_parameters(model)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.