Posterior Predictive Checks for Bayesian Analyses fit in JAGS
A simple interface for generating a posterior predictive check plot for a JAGS analysis fit using jagsUI, based on the posterior distributions of discrepency metrics specified by the user and calculated and returned by JAGS (for example, sums of residuals). The user supplies the name of the discrepancy metric calculated for the real data in the argument actual
, and the corresponding discrepancy for data simulated by the model in argument new
. The posterior distributions of the two parameters will be plotted in X-Y space and a Bayesian p-value calculated.
pp.check(x, observed, simulated, xlab=NULL, ylab=NULL, main=NULL, ...)
x |
A jagsUI object generated using the |
observed |
The name of the parameter (as a string, in the JAGS model) representing the fit of the observed data (e.g. residuals) |
simulated |
The name of the corresponding parameter (as a string, in the JAGS model) representing the fit of the new simulated data |
xlab |
Customize x-axis label |
ylab |
Customize y-axis label |
main |
Customize plot title |
... |
Additional arguments passed to plot.default |
Ken Kellner contact@kenkellner.com.
#Analyze Longley economic data in JAGS #Number employed as a function of GNP #See ?jags for a more detailed example #Get data data(longley) gnp <- longley$GNP employed <- longley$Employed n <- length(employed) data <- list(gnp=gnp,employed=employed,n=n) #Identify filepath of model file modfile <- tempfile() #Write model #Note calculation of discrepancy stats fit and fit.new #(sums of residuals) writeLines(" model{ #Likelihood for (i in 1:n){ employed[i] ~ dnorm(mu[i], tau) mu[i] <- alpha + beta*gnp[i] res[i] <- employed[i] - mu[i] emp.new[i] ~ dnorm(mu[i], tau) res.new[i] <- emp.new[i] - mu[i] } #Priors alpha ~ dnorm(0, 0.00001) beta ~ dnorm(0, 0.00001) sigma ~ dunif(0,1000) tau <- pow(sigma,-2) #Derived parameters fit <- sum(res[]) fit.new <- sum(res.new[]) } ", con=modfile) #Set parameters to monitor params <- c('alpha','beta','sigma','fit','fit.new') #Run analysis out <- jags(data = data, inits = NULL, parameters.to.save = params, model.file = modfile, n.chains = 3, n.adapt = 100, n.iter = 1000, n.burnin = 500, n.thin = 2) #Examine output summary out #Posterior predictive check plot pp.check(out, observed = 'fit', simulated = 'fit.new')
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.