ANOVA
The Analysis of Variance (ANOVA) is used to explore the relationship between a continuous dependent variable, and one or more categorical explanatory variables.
ANOVA( data, dep, factors = NULL, effectSize = NULL, modelTest = FALSE, modelTerms = NULL, ss = "3", homo = FALSE, norm = FALSE, qq = FALSE, contrasts = NULL, postHoc = NULL, postHocCorr = list("tukey"), postHocES = list(), emMeans = list(list()), emmPlots = TRUE, emmPlotData = FALSE, emmPlotError = "ci", emmTables = FALSE, emmWeights = TRUE, ciWidthEmm = 95, formula )
data |
the data as a data frame |
dep |
the dependent variable from |
factors |
the explanatory factors in |
effectSize |
one or more of |
modelTest |
|
modelTerms |
a formula describing the terms to go into the model (not necessary when providing a formula, see examples) |
ss |
|
homo |
|
norm |
|
qq |
|
contrasts |
a list of lists specifying the factor and type of contrast
to use, one of |
postHoc |
a formula containing the terms to perform post-hoc tests on (see the examples) |
postHocCorr |
one or more of |
postHocES |
a possible value of |
emMeans |
a formula containing the terms to estimate marginal means for (see the examples) |
emmPlots |
|
emmPlotData |
|
emmPlotError |
|
emmTables |
|
emmWeights |
|
ciWidthEmm |
a number between 50 and 99.9 (default: 95) specifying the confidence interval width for the estimated marginal means |
formula |
(optional) the formula to use, see the examples |
ANOVA assumes that the residuals are normally distributed, and that the variances of all groups are equal. If one is unwilling to assume that the variances are equal, then a Welch's test can be used instead (However, the Welch's test does not support more than one explanatory factor). Alternatively, if one is unwilling to assume that the data is normally distributed, a non-parametric approach (such as Kruskal-Wallis) can be used.
A results object containing:
results$main |
a table of ANOVA results | ||||
results$model |
The underlying aov object |
||||
results$assump$homo |
a table of homogeneity tests | ||||
results$assump$norm |
a table of normality tests | ||||
results$assump$qq |
a q-q plot | ||||
results$contrasts |
an array of contrasts tables | ||||
results$postHoc |
an array of post-hoc tables | ||||
results$emm |
an array of the estimated marginal means plots + tables | ||||
Tables can be converted to data frames with asDF
or as.data.frame
. For example:
results$main$asDF
as.data.frame(results$main)
data('ToothGrowth') ANOVA(formula = len ~ dose * supp, data = ToothGrowth) # # ANOVA # # ANOVA # ----------------------------------------------------------------------- # Sum of Squares df Mean Square F p # ----------------------------------------------------------------------- # dose 2426 2 1213.2 92.00 < .001 # supp 205 1 205.4 15.57 < .001 # dose:supp 108 2 54.2 4.11 0.022 # Residuals 712 54 13.2 # ----------------------------------------------------------------------- # ANOVA( formula = len ~ dose * supp, data = ToothGrowth, emMeans = ~ supp + dose:supp, # est. marginal means for supp and dose:supp emmPlots = TRUE, # produce plots of those marginal means emmTables = TRUE) # produce tables of those marginal means
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.