Binomial Logistic Regression
Binomial Logistic Regression
logRegBin( data, dep, covs = NULL, factors = NULL, blocks = list(list()), refLevels = NULL, modelTest = FALSE, dev = TRUE, aic = TRUE, bic = FALSE, pseudoR2 = list("r2mf"), omni = FALSE, ci = FALSE, ciWidth = 95, OR = FALSE, ciOR = FALSE, ciWidthOR = 95, emMeans = list(list()), ciEmm = TRUE, ciWidthEmm = 95, emmPlots = TRUE, emmTables = FALSE, emmWeights = TRUE, class = FALSE, acc = FALSE, spec = FALSE, sens = FALSE, auc = FALSE, rocPlot = FALSE, cutOff = 0.5, cutOffPlot = FALSE, collin = FALSE, boxTidwell = FALSE, cooks = FALSE )
data |
the data as a data frame |
dep |
a string naming the dependent variable from |
covs |
a vector of strings naming the covariates from |
factors |
a vector of strings naming the fixed factors from
|
blocks |
a list containing vectors of strings that name the predictors that are added to the model. The elements are added to the model according to their order in the list |
refLevels |
a list of lists specifying reference levels of the dependent variable and all the factors |
modelTest |
|
dev |
|
aic |
|
bic |
|
pseudoR2 |
one or more of |
omni |
|
ci |
|
ciWidth |
a number between 50 and 99.9 (default: 95) specifying the confidence interval width |
OR |
|
ciOR |
|
ciWidthOR |
a number between 50 and 99.9 (default: 95) specifying the confidence interval width |
emMeans |
a list of lists specifying the variables for which the estimated marginal means need to be calculate. Supports up to three variables per term. |
ciEmm |
|
ciWidthEmm |
a number between 50 and 99.9 (default: 95) specifying the confidence interval width for the estimated marginal means |
emmPlots |
|
emmTables |
|
emmWeights |
|
class |
|
acc |
|
spec |
|
sens |
|
auc |
|
rocPlot |
|
cutOff |
|
cutOffPlot |
|
collin |
|
boxTidwell |
|
cooks |
|
A results object containing:
results$modelFit |
a table | ||||
results$modelComp |
a table | ||||
results$models |
an array of model specific results | ||||
Tables can be converted to data frames with asDF
or as.data.frame
. For example:
results$modelFit$asDF
as.data.frame(results$modelFit)
data('birthwt', package='MASS') dat <- data.frame( low = factor(birthwt$low), age = birthwt$age, bwt = birthwt$bwt) logRegBin(data = dat, dep = low, covs = vars(age, bwt), blocks = list(list("age", "bwt")), refLevels = list(list(var="low", ref="0"))) # # BINOMIAL LOGISTIC REGRESSION # # Model Fit Measures # --------------------------------------- # Model Deviance AIC R²-McF # --------------------------------------- # 1 4.97e-7 6.00 1.000 # --------------------------------------- # # # MODEL SPECIFIC RESULTS # # MODEL 1 # # Model Coefficients # ------------------------------------------------------------ # Predictor Estimate SE Z p # ------------------------------------------------------------ # Intercept 2974.73225 218237.2 0.0136 0.989 # age -0.00653 482.7 -1.35e-5 1.000 # bwt -1.18532 87.0 -0.0136 0.989 # ------------------------------------------------------------ # Note. Estimates represent the log odds of "low = 1" # vs. "low = 0" # #
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.