Ordinal Logistic Regression
Ordinal Logistic Regression
logRegOrd( data, dep, covs = NULL, factors = NULL, blocks = list(list()), refLevels = NULL, modelTest = FALSE, dev = TRUE, aic = TRUE, bic = FALSE, pseudoR2 = list("r2mf"), omni = FALSE, thres = FALSE, ci = FALSE, ciWidth = 95, OR = FALSE, ciOR = FALSE, ciWidthOR = 95 )
data |
the data as a data frame |
dep |
a string naming the dependent variable from |
covs |
a vector of strings naming the covariates from |
factors |
a vector of strings naming the fixed factors from
|
blocks |
a list containing vectors of strings that name the predictors that are added to the model. The elements are added to the model according to their order in the list |
refLevels |
a list of lists specifying reference levels of the dependent variable and all the factors |
modelTest |
|
dev |
|
aic |
|
bic |
|
pseudoR2 |
one or more of |
omni |
|
thres |
|
ci |
|
ciWidth |
a number between 50 and 99.9 (default: 95) specifying the confidence interval width |
OR |
|
ciOR |
|
ciWidthOR |
a number between 50 and 99.9 (default: 95) specifying the confidence interval width |
A results object containing:
results$modelFit |
a table | ||||
results$modelComp |
a table | ||||
results$models |
an array of model specific results | ||||
Tables can be converted to data frames with asDF
or as.data.frame
. For example:
results$modelFit$asDF
as.data.frame(results$modelFit)
set.seed(1337) y <- factor(sample(1:3, 100, replace = TRUE)) x1 <- rnorm(100) x2 <- rnorm(100) df <- data.frame(y=y, x1=x1, x2=x2) logRegOrd(data = df, dep = y, covs = vars(x1, x2), blocks = list(list("x1", "x2"))) # # ORDINAL LOGISTIC REGRESSION # # Model Fit Measures # --------------------------------------- # Model Deviance AIC R²-McF # --------------------------------------- # 1 218 226 5.68e-4 # --------------------------------------- # # # MODEL SPECIFIC RESULTS # # MODEL 1 # # Model Coefficients # ---------------------------------------------------- # Predictor Estimate SE Z p # ---------------------------------------------------- # x1 0.0579 0.193 0.300 0.764 # x2 0.0330 0.172 0.192 0.848 # ---------------------------------------------------- # #
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.