Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mancova

MANCOVA


Description

Multivariate Analysis of (Co)Variance (MANCOVA) is used to explore the relationship between multiple dependent variables, and one or more categorical and/or continuous explanatory variables.

Usage

mancova(
  data,
  deps,
  factors = NULL,
  covs = NULL,
  multivar = list("pillai", "wilks", "hotel", "roy"),
  boxM = FALSE,
  shapiro = FALSE,
  qqPlot = FALSE
)

Arguments

data

the data as a data frame

deps

a string naming the dependent variable from data, variable must be numeric

factors

a vector of strings naming the factors from data

covs

a vector of strings naming the covariates from data

multivar

one or more of 'pillai', 'wilks', 'hotel', or 'roy'; use Pillai's Trace, Wilks' Lambda, Hotelling's Trace, and Roy's Largest Root multivariate statistics, respectively

boxM

TRUE or FALSE (default), provide Box's M test

shapiro

TRUE or FALSE (default), provide Shapiro-Wilk test

qqPlot

TRUE or FALSE (default), provide a Q-Q plot of multivariate normality

Value

A results object containing:

results$multivar a table
results$univar a table
results$assump$boxM a table
results$assump$shapiro a table
results$assump$qqPlot an image

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$multivar$asDF

as.data.frame(results$multivar)

Examples

data('iris')

mancova(data = iris,
    deps = vars(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width),
    factors = Species)

#
#  MANCOVA
#
#  Multivariate Tests
#  ---------------------------------------------------------------------------
#                                     value     F       df1    df2    p
#  ---------------------------------------------------------------------------
#    Species    Pillai's Trace          1.19    53.5      8    290    < .001
#               Wilks' Lambda         0.0234     199      8    288    < .001
#               Hotelling's Trace       32.5     581      8    286    < .001
#               Roy's Largest Root      32.2    1167      4    145    < .001
#  ---------------------------------------------------------------------------
#
#
#  Univariate Tests
#  -----------------------------------------------------------------------------------------------
#                 Dependent Variable    Sum of Squares    df     Mean Square    F         p
#  -----------------------------------------------------------------------------------------------
#    Species      Sepal.Length                   63.21      2        31.6061     119.3    < .001
#                 Sepal.Width                    11.34      2         5.6725      49.2    < .001
#                 Petal.Length                  437.10      2       218.5514    1180.2    < .001
#                 Petal.Width                    80.41      2        40.2067     960.0    < .001
#    Residuals    Sepal.Length                   38.96    147         0.2650
#                 Sepal.Width                    16.96    147         0.1154
#                 Petal.Length                   27.22    147         0.1852
#                 Petal.Width                     6.16    147         0.0419
#  -----------------------------------------------------------------------------------------------
#

jmv

The 'jamovi' Analyses

v1.2.23
GPL (>= 2)
Authors
Ravi Selker, Jonathon Love, Damian Dropmann
Initial release
2020-06-26

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.