Principal Component Analysis
Principal Component Analysis
pca( data, vars, nFactorMethod = "parallel", nFactors = 1, minEigen = 1, rotation = "varimax", hideLoadings = 0.3, sortLoadings = FALSE, screePlot = FALSE, eigen = FALSE, factorCor = FALSE, factorSummary = FALSE, kmo = FALSE, bartlett = FALSE )
data |
the data as a data frame |
vars |
a vector of strings naming the variables of interest in
|
nFactorMethod |
|
nFactors |
an integer (default: 1), the number of components in the model |
minEigen |
a number (default: 1), the minimal eigenvalue for a component to be included in the model |
rotation |
|
hideLoadings |
a number (default: 0.3), hide loadings below this value |
sortLoadings |
|
screePlot |
|
eigen |
|
factorCor |
|
factorSummary |
|
kmo |
|
bartlett |
|
A results object containing:
results$loadings |
a table | ||||
results$factorStats$factorSummary |
a table | ||||
results$factorStats$factorCor |
a table | ||||
results$modelFit$fit |
a table | ||||
results$assump$bartlett |
a table | ||||
results$assump$kmo |
a table | ||||
results$eigen$initEigen |
a table | ||||
results$eigen$screePlot |
an image | ||||
Tables can be converted to data frames with asDF
or as.data.frame
. For example:
results$loadings$asDF
as.data.frame(results$loadings)
data('iris') pca(iris, vars = vars(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)) # # PRINCIPAL COMPONENT ANALYSIS # # Component Loadings # ---------------------------------------- # 1 Uniqueness # ---------------------------------------- # Sepal.Length 0.890 0.2076 # Sepal.Width -0.460 0.7883 # Petal.Length 0.992 0.0168 # Petal.Width 0.965 0.0688 # ---------------------------------------- # Note. 'varimax' rotation was used #
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.