Proportion Test (2 Outcomes)
The Binomial test is used to test the Null hypothesis that the proportion of observations match some expected value. If the p-value is low, this suggests that the Null hypothesis is false, and that the true proportion must be some other value.
propTest2( data, vars, areCounts = FALSE, testValue = 0.5, hypothesis = "notequal", ci = FALSE, ciWidth = 95, bf = FALSE, priorA = 1, priorB = 1, ciBayes = FALSE, ciBayesWidth = 95, postPlots = FALSE )
data |
the data as a data frame |
vars |
a vector of strings naming the variables of interest in
|
areCounts |
|
testValue |
a number (default: 0.5), the value for the null hypothesis |
hypothesis |
|
ci |
|
ciWidth |
a number between 50 and 99.9 (default: 95), the confidence interval width |
bf |
|
priorA |
a number (default: 1), the beta prior 'a' parameter |
priorB |
a number (default: 1), the beta prior 'b' parameter |
ciBayes |
|
ciBayesWidth |
a number between 50 and 99.9 (default: 95), the credible interval width |
postPlots |
|
A results object containing:
results$table |
a table of the proportions and test results | ||||
results$postPlots |
an array of the posterior plots | ||||
Tables can be converted to data frames with asDF
or as.data.frame
. For example:
results$table$asDF
as.data.frame(results$table)
## Not run: dat <- data.frame(x=c(8, 15)) propTest2(dat, vars = x, areCounts = TRUE) # # PROPORTION TEST (2 OUTCOMES) # # Binomial Test # ------------------------------------------------------- # Level Count Total Proportion p # ------------------------------------------------------- # x 1 8 23 0.348 0.210 # 2 15 23 0.652 0.210 # ------------------------------------------------------- # Note. Ha is proportion != 0.5 # ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.