Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

confint.mjoint

Confidence intervals for model parameters of an mjoint object


Description

This function computes confidence intervals for one or more parameters in a fitted mjoint object.

Usage

## S3 method for class 'mjoint'
confint(
  object,
  parm = c("Both", "Longitudinal", "Event"),
  level = 0.95,
  bootSE = NULL,
  ...
)

Arguments

object

an object inheriting from class mjoint for a joint model of time-to-event and multivariate longitudinal data.

parm

a character string specifying which sub-model parameter confidence intervals should be returned for. Can be specified as parm='Longitudinal' (multivariate longitudinal sub-model), parm='Event' (time-to-event sub-model), or parm='both' (default).

level

the confidence level required. Default is level=0.95 for a 95% confidence interval.

bootSE

an object inheriting from class bootSE for the corresponding model. If bootSE=NULL, the function will attempt to utilize approximate standard error estimates (if available) calculated from the empirical information matrix.

...

additional arguments; currently none are used.

Value

A matrix containing the confidence intervals for either the longitudinal, time-to-event, or both sub-models.

Author(s)

Graeme L. Hickey (graemeleehickey@gmail.com)

References

McLachlan GJ, Krishnan T. The EM Algorithm and Extensions. Second Edition. Wiley-Interscience; 2008.

Henderson R, Diggle PJ, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics. 2000; 1(4): 465-480.

Lin H, McCulloch CE, Mayne ST. Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Stat Med. 2002; 21: 2369-2382.

Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997; 53(1): 330-339.

See Also

mjoint, bootSE, and confint for the generic method description.

Examples

# Fit a classical univariate joint model with a single longitudinal outcome
# and a single time-to-event outcome

data(heart.valve)
hvd <- heart.valve[!is.na(heart.valve$log.grad) & !is.na(heart.valve$log.lvmi), ]

gamma <- c(0.1059417, 1.0843359)
sigma2 <- 0.03725999
beta <- c(4.9988669999, -0.0093527634, 0.0004317697)
D <- matrix(c(0.128219108, -0.006665505, -0.006665505, 0.002468688),
            nrow = 2, byrow = TRUE)

set.seed(1)
fit1 <- mjoint(formLongFixed = log.lvmi ~ time + age,
    formLongRandom = ~ time | num,
    formSurv = Surv(fuyrs, status) ~ age,
    data = hvd,
    timeVar = "time",
    inits = list(gamma = gamma, sigma2 = sigma2, beta = beta, D = D),
    control = list(nMCscale = 2, burnin = 5)) # controls for illustration only

confint(fit1, parm = "Longitudinal")

## Not run: 
# Fit a joint model with bivariate longitudinal outcomes

data(heart.valve)
hvd <- heart.valve[!is.na(heart.valve$log.grad) & !is.na(heart.valve$log.lvmi), ]

fit2 <- mjoint(
    formLongFixed = list("grad" = log.grad ~ time + sex + hs,
                         "lvmi" = log.lvmi ~ time + sex),
    formLongRandom = list("grad" = ~ 1 | num,
                          "lvmi" = ~ time | num),
    formSurv = Surv(fuyrs, status) ~ age,
    data = list(hvd, hvd),
    inits = list("gamma" = c(0.11, 1.51, 0.80)),
    timeVar = "time",
    verbose = TRUE)
confint(fit2)

## End(Not run)

joineRML

Joint Modelling of Multivariate Longitudinal Data and Time-to-Event Outcomes

v0.4.5
GPL-3 | file LICENSE
Authors
Graeme L. Hickey [cre, aut] (<https://orcid.org/0000-0002-4989-0054>), Pete Philipson [aut] (<https://orcid.org/0000-0001-7846-0208>), Andrea Jorgensen [ctb] (<https://orcid.org/0000-0002-6977-9337>), Ruwanthi Kolamunnage-Dona [aut] (<https://orcid.org/0000-0003-3886-6208>), Paula Williamson [ctb] (<https://orcid.org/0000-0001-9802-6636>), Dimitris Rizopoulos [ctb, dtc] (data/renal.rda, R/hessian.R, R/vcov.R), Alessandro Gasparini [aut] (<https://orcid.org/0000-0002-8319-7624>), Medical Research Council [fnd] (Grant number: MR/M013227/1)
Initial release
2021-04-21

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.