Confidence intervals for model parameters of an mjoint object
This function computes confidence intervals for one or more
parameters in a fitted mjoint
object.
## S3 method for class 'mjoint' confint( object, parm = c("Both", "Longitudinal", "Event"), level = 0.95, bootSE = NULL, ... )
object |
an object inheriting from class |
parm |
a character string specifying which sub-model parameter
confidence intervals should be returned for. Can be specified as
|
level |
the confidence level required. Default is |
bootSE |
an object inheriting from class |
... |
additional arguments; currently none are used. |
A matrix containing the confidence intervals for either the longitudinal, time-to-event, or both sub-models.
Graeme L. Hickey (graemeleehickey@gmail.com)
McLachlan GJ, Krishnan T. The EM Algorithm and Extensions. Second Edition. Wiley-Interscience; 2008.
Henderson R, Diggle PJ, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics. 2000; 1(4): 465-480.
Lin H, McCulloch CE, Mayne ST. Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Stat Med. 2002; 21: 2369-2382.
Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997; 53(1): 330-339.
# Fit a classical univariate joint model with a single longitudinal outcome # and a single time-to-event outcome data(heart.valve) hvd <- heart.valve[!is.na(heart.valve$log.grad) & !is.na(heart.valve$log.lvmi), ] gamma <- c(0.1059417, 1.0843359) sigma2 <- 0.03725999 beta <- c(4.9988669999, -0.0093527634, 0.0004317697) D <- matrix(c(0.128219108, -0.006665505, -0.006665505, 0.002468688), nrow = 2, byrow = TRUE) set.seed(1) fit1 <- mjoint(formLongFixed = log.lvmi ~ time + age, formLongRandom = ~ time | num, formSurv = Surv(fuyrs, status) ~ age, data = hvd, timeVar = "time", inits = list(gamma = gamma, sigma2 = sigma2, beta = beta, D = D), control = list(nMCscale = 2, burnin = 5)) # controls for illustration only confint(fit1, parm = "Longitudinal") ## Not run: # Fit a joint model with bivariate longitudinal outcomes data(heart.valve) hvd <- heart.valve[!is.na(heart.valve$log.grad) & !is.na(heart.valve$log.lvmi), ] fit2 <- mjoint( formLongFixed = list("grad" = log.grad ~ time + sex + hs, "lvmi" = log.lvmi ~ time + sex), formLongRandom = list("grad" = ~ 1 | num, "lvmi" = ~ time | num), formSurv = Surv(fuyrs, status) ~ age, data = list(hvd, hvd), inits = list("gamma" = c(0.11, 1.51, 0.80)), timeVar = "time", verbose = TRUE) confint(fit2) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.