VGG16 and VGG19 models for Keras.
VGG16 and VGG19 models for Keras.
application_vgg16( include_top = TRUE, weights = "imagenet", input_tensor = NULL, input_shape = NULL, pooling = NULL, classes = 1000 ) application_vgg19( include_top = TRUE, weights = "imagenet", input_tensor = NULL, input_shape = NULL, pooling = NULL, classes = 1000 )
include_top |
whether to include the 3 fully-connected layers at the top of the network. |
weights |
|
input_tensor |
optional Keras tensor to use as image input for the model. |
input_shape |
optional shape list, only to be specified if |
pooling |
Optional pooling mode for feature extraction when
|
classes |
optional number of classes to classify images into, only to be
specified if |
Optionally loads weights pre-trained on ImageNet.
The imagenet_preprocess_input()
function should be used for image preprocessing.
Keras model instance.
## Not run: library(keras) model <- application_vgg16(weights = 'imagenet', include_top = FALSE) img_path <- "elephant.jpg" img <- image_load(img_path, target_size = c(224,224)) x <- image_to_array(img) x <- array_reshape(x, c(1, dim(x))) x <- imagenet_preprocess_input(x) features <- model %>% predict(x) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.