Keras Model
A model is a directed acyclic graph of layers.
keras_model(inputs, outputs = NULL, ...)
inputs |
Input layer |
outputs |
Output layer |
... |
Any additional arguments |
Other model functions:
compile.keras.engine.training.Model()
,
evaluate.keras.engine.training.Model()
,
evaluate_generator()
,
fit.keras.engine.training.Model()
,
fit_generator()
,
get_config()
,
get_layer()
,
keras_model_sequential()
,
multi_gpu_model()
,
pop_layer()
,
predict.keras.engine.training.Model()
,
predict_generator()
,
predict_on_batch()
,
predict_proba()
,
summary.keras.engine.training.Model()
,
train_on_batch()
## Not run: library(keras) # input layer inputs <- layer_input(shape = c(784)) # outputs compose input + dense layers predictions <- inputs %>% layer_dense(units = 64, activation = 'relu') %>% layer_dense(units = 64, activation = 'relu') %>% layer_dense(units = 10, activation = 'softmax') # create and compile model model <- keras_model(inputs = inputs, outputs = predictions) model %>% compile( optimizer = 'rmsprop', loss = 'categorical_crossentropy', metrics = c('accuracy') ) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.