Apply additive zero-centered Gaussian noise.
This is useful to mitigate overfitting (you could see it as a form of random data augmentation). Gaussian Noise (GS) is a natural choice as corruption process for real valued inputs. As it is a regularization layer, it is only active at training time.
layer_gaussian_noise( object, stddev, input_shape = NULL, batch_input_shape = NULL, batch_size = NULL, dtype = NULL, name = NULL, trainable = NULL, weights = NULL )
object |
Model or layer object |
stddev |
float, standard deviation of the noise distribution. |
input_shape |
Dimensionality of the input (integer) not including the samples axis. This argument is required when using this layer as the first layer in a model. |
batch_input_shape |
Shapes, including the batch size. For instance,
|
batch_size |
Fixed batch size for layer |
dtype |
The data type expected by the input, as a string ( |
name |
An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided. |
trainable |
Whether the layer weights will be updated during training. |
weights |
Initial weights for layer. |
Arbitrary. Use the keyword argument input_shape
(list
of integers, does not include the samples axis) when using this layer as
the first layer in a model.
Same shape as input.
Other noise layers:
layer_alpha_dropout()
,
layer_gaussian_dropout()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.