Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

errormatrix

Tabulation of prediction errors by classes


Description

Cross-tabulates true and predicted classes with the option to show relative frequencies.

Usage

errormatrix(true, predicted, relative = FALSE)

Arguments

true

Vector of true classes.

predicted

Vector of predicted classes.

relative

Logical. If TRUE rows are normalized to show relative frequencies (see below).

Details

Given vectors of true and predicted classes, a (symmetric) table of misclassifications is constructed.

Element [i,j] shows the number of objects of class i that were classified as class j; so the main diagonal shows the correct classifications. The last row and column show the corresponding sums of misclassifications, the lower right element is the total sum of misclassifications.

If ‘relative’ is TRUE, the rows are normalized so they show relative frequencies instead. The lower right element now shows the total error rate, and the remaining last row sums up to one, so it shows “where the misclassifications went”.

Value

A (named) matrix.

Note

Concerning the case that ‘relative’ is TRUE:

If a prior distribution over the classes is given, the misclassification rate that is returned as the lower right element (which is only the fraction of misclassified data) is not an estimator for the expected misclassification rate.

In that case you have to multiply the individual error rates for each class (returned in the last column) with the corresponding prior probabilities and sum these up (see example below).

Both error rate estimates are equal, if the fractions of classes in the data are equal to the prior probabilities.

Author(s)

See Also

Examples

data(iris)
library(MASS)
x <- lda(Species ~ Sepal.Length + Sepal.Width, data=iris)
y <- predict(x, iris)

# absolute numbers: 
errormatrix(iris$Species, y$class)

# relative frequencies: 
errormatrix(iris$Species, y$class, relative = TRUE)

# percentages: 
round(100 * errormatrix(iris$Species, y$class, relative = TRUE), 0)

# expected error rate in case of class prior: 
indiv.rates <- errormatrix(iris$Species, y$class, relative = TRUE)[1:3, 4]
prior <- c("setosa" = 0.2, "versicolor" = 0.3, "virginica" = 0.5)
total.rate <- t(indiv.rates) %*% prior
total.rate

klaR

Classification and Visualization

v0.6-15
GPL-2 | GPL-3
Authors
Christian Roever, Nils Raabe, Karsten Luebke, Uwe Ligges, Gero Szepannek, Marc Zentgraf, David Meyer
Initial release
2020-02-18

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.