Calculation of HMM Sum of Path
A Hidden Markov Model for the classification of states in a time series. Based on the transition probabilities and the so called emission probabilities (p(class|x)) the ‘prior probablilities’ of states (classes) in time period t given all past information in time period t are calculated.
hmm.sop(sv, trans.matrix, prob.matrix)
sv |
state at time 0 |
trans.matrix |
matrix of transition probabilities |
prob.matrix |
matrix of p(class|x) |
Returns the ‘prior probablilities’ of states.
Daniel Fischer, Reinald Oetsch
Garczarek, Ursula Maria (2002): Classification rules in standardized partition spaces. Dissertation, University of Dortmund. URL http://hdl.handle.net/2003/2789
library(MASS) data(B3) trans.matrix <- calc.trans(B3$PHASEN) # Calculate posterior prob. for the classes via lda prob.matrix <- predict(lda(PHASEN ~ ., data = B3))$post errormatrix(B3$PHASEN, apply(prob.matrix, 1, which.max)) prior.prob <- hmm.sop("2", trans.matrix, prob.matrix) errormatrix(B3$PHASEN, apply(prior.prob, 1, which.max))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.