Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

meclight

Minimal Error Classification


Description

Computer intensive method for linear dimension reduction that minimizes the classification error directly.

Usage

meclight(x, ...)

## Default S3 method:
meclight(x, grouping, r = 1, fold = 10, ...)
## S3 method for class 'formula'
meclight(formula, data = NULL, ..., subset, na.action = na.fail)
## S3 method for class 'data.frame'
meclight(x, ...)
## S3 method for class 'matrix'
meclight(x, grouping, ..., subset, na.action = na.fail)

Arguments

x

(required if no formula is given as the principal argument.) A matrix or data frame containing the explanatory variables.

grouping

(required if no formula principal argument is given.) A factor specifying the class for each observation.

r

Dimension of projected subspace.

fold

Number of Bootstrap samples.

formula

A formula of the form groups ~ x1 + x2 + .... That is, the response is the grouping factor and the right hand side specifies the (non-factor) discriminators.

data

Data frame from which variables specified in formula are preferentially to be taken.

subset

An index vector specifying the cases to be used in the training sample. (NOTE: If given, this argument must be named.)

na.action

A function to specify the action to be taken if NAs are found. The default action is for the procedure to fail. An alternative is na.omit, which leads to rejection of cases with missing values on any required variable. (NOTE: If given, this argument must be named.)

...

Further arguments passed to lda.

Details

Computer intensive method for linear dimension reduction that minimizes the classification error in the projected subspace directly. Classification is done by lda. In contrast to the reference function minimization is done by Nelder-Mead in optim.

Value

method.model

An object of class ‘lda’.

Proj.matrix

Projection matrix.

B.error

Estimated bootstrap error rate.

B.impro

Improvement in lda error rate.

Author(s)

Maria Eveslage, Karsten Luebke, karsten.luebke@fom.de

References

Roehl, M.C., Weihs, C., and Theis, W. (2002): Direct Minimization in Multivariate Classification. Computational Statistics, 17, 29-46.

See Also

Examples

data(iris)
meclight.obj <- meclight(Species ~ ., data = iris)
meclight.obj

klaR

Classification and Visualization

v0.6-15
GPL-2 | GPL-3
Authors
Christian Roever, Nils Raabe, Karsten Luebke, Uwe Ligges, Gero Szepannek, Marc Zentgraf, David Meyer
Initial release
2020-02-18

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.