~ Function: clusterLongData (or cld) ~
clusterLongData
(or cld
in short) is the constructor
for ClusterLongData
object.
clusterLongData(traj, idAll, time, timeInData, varNames, maxNA) cld(traj, idAll, time, timeInData, varNames, maxNA)
traj |
|
idAll |
|
time |
|
timeInData |
|
varNames |
|
maxNA |
|
clusterLongData
construct a object of class ClusterLongData
.
Two cases can be distinguised:
traj
is an array
:lines are individual. Column are time of measurment.
If idAll
is missing, the individuals are labelled i1
,
i2
, i3
,...
If timeInData
is missing, all the column
are used (timeInData=1:ncol(traj)
).
traj
is a data.frame
:lines are individual. Column are time of measurement.
If idAll
is missing, then the first column of the
data.frame
is used for idAll
If timeInData
is missing and idAll
is missing, then
all the columns but the first are used for timeInData
(the
first is omited since it is already used for idAll
): idAll=traj[,1],timeInData=2:ncol(traj)
.
If timeInData
is missing but idAll
is not missing,
then all the column including the first are used for timeInData
: timeInData=1:ncol(traj)
.
An object of class ClusterLongData
.
Christophe Genolini
1. UMR U1027, INSERM, Université Paul Sabatier / Toulouse III / France
2. CeRSME, EA 2931, UFR STAPS, Université de Paris Ouest-Nanterre-La Défense / Nanterre / France
[1] C. Genolini and B. Falissard
"KmL: k-means for longitudinal data"
Computational Statistics, vol 25(2), pp 317-328, 2010
[2] C. Genolini and B. Falissard
"KmL: A package to cluster longitudinal data"
Computer Methods and Programs in Biomedicine, 104, pp e112-121, 2011
Overview: kml-package
Classes : ClusterLongData
Methods : choice
, kml
Plot : plot(ClusterLongData)
##################### ### From matrix ### Small data mat <- matrix(c(1,NA,3,2,3,6,1,8,10),3,3,dimnames=list(c(101,102,104),c("T2","T4","T8"))) clusterLongData(mat) (ld1 <- clusterLongData(traj=mat,idAll=as.character(c(101,102,104)),time=c(2,4,8),varNames="V")) plot(ld1) ### Big data mat <- matrix(runif(1051*325),1051,325) (ld2 <- clusterLongData(traj=mat,idAll=paste("I-",1:1051,sep=""),time=(1:325)+0.5,varNames="R")) #################### ### From data.frame dn <- data.frame(id=1:3,v1=c(NA,2,1),v2=c(NA,1,0),v3=c(3,2,2),v4=c(4,2,NA)) ### Basic clusterLongData(dn) ### Selecting some times (ld3 <- clusterLongData(dn,timeInData=c(1,2,4),varNames=c("Hyp"))) ### Excluding trajectories with more than 1 NA (ld3 <- clusterLongData(dn,maxNA=1))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.