Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

fuzzyKmlSlow

~ Algorithm fuzzy kml: Fuzzy k-means for Longitidinal data ~


Description

fuzzyKmlSlow is a new implementation of fuzzy k-means for longitudinal data (or trajectories).

Usage

fuzzyKmlSlow(traj, clusterAffectation, toPlot = "traj",
   fuzzyfier = 1.25, parAlgo = parALGO())

Arguments

traj

[matrix(numeric)]: Matrix holding the longitudinal data

clusterAffectation

[vector(numeric)]: Initial starting condition

toPlot

[character]: if "traj", then the trajectories are plot. If "none", there is no graphical display (faster).

fuzzyfier

[numeric]: value of the fuzzy k-means algorithm fuzzyfier.

parAlgo

[ParKml]: default parameters for the algorithm.

Details

fuzzyKmlSlow is a new implementation of fuzzy k-means for longitudinal data (or trajectories). To date, it is writen in R (and not in C, this explain the "slow")

Value

The matrix of the individual membership.

See Also

Examples

### Data generation
traj <- gald(25)["traj"]
partInit <- initializePartition(3,100,"kmeans--",traj)

### fuzzy Kml
partResult <- fuzzyKmlSlow(traj,partInit)

kml

K-Means for Longitudinal Data

v2.4.1
GPL (>= 2)
Authors
Christophe Genolini [cre, aut], Bruno Falissard [ctb]
Initial release
2016-02-02

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.