Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

Hnm

Normal mixture bandwidth


Description

Normal mixture bandwidth.

Usage

Hnm(x, deriv.order=0, G=1:9, subset.ind, mise.flag=FALSE, verbose, ...)
Hnm.diag(x, deriv.order=0, G=1:9, subset.ind, mise.flag=FALSE, verbose, ...)
hnm(x, deriv.order=0, G=1:9, subset.ind, mise.flag=FALSE, verbose, ... )

Arguments

x

vector/matrix of data values

deriv.order

derivative order

G

range of number of mixture components

subset.ind

index vector of subset of x for fitting

mise.flag

flag to use MISE or AMISE minimisation. Default is FALSE.

verbose

flag to print out progress information. Default is FALSE.

...

other parameters for Mclust

Details

The normal mixture fit is provided by the Mclust function in the mclust package. Hnm is then Hmise.mixt (if mise.flag=TRUE) or Hamise.mixt (if mise.flag=FALSE) with these fitted normal mixture parameters. Likewise for Hnm.diag, hnm.

Value

Normal mixture bandwidth. If mise=TRUE then the minimal MISE value is returned too.

References

Cwik, J. & Koronacki, J. (1997). A combined adaptive-mixtures/plug-in estimator of multivariate probability densities. Computational Statistics and Data Analysis, 26, 199-218.

See Also

Examples

library(MASS)
data(forbes)
Hnm(forbes)

ks

Kernel Smoothing

v1.12.0
GPL-2 | GPL-3
Authors
Tarn Duong [aut, cre], Matt Wand [ctb], Jose Chacon [ctb], Artur Gramacki [ctb]
Initial release
2021-02-06

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.