Derived quantities from kernel density estimates
Derived quantities from kernel density estimates.
dkde(x, fhat) pkde(q, fhat) qkde(p, fhat) rkde(n, fhat, positive=FALSE)
x,q |
vector of quantiles |
p |
vector of probabilities |
n |
number of observations |
positive |
flag to compute KDE on the positive real line. Default is FALSE. |
fhat |
kernel density estimate, object of class |
pkde
uses the trapezoidal rule for the numerical
integration. rkde
uses
Silverman (1986)'s method to generate a random sample from a KDE.
For the 1-d kernel density estimate fhat
,
pkde
computes the cumulative probability for the quantile
q
, qkde
computes the quantile corresponding to the probability
p
.
For any kernel density estimate, dkde
computes the density value at
x
(it is an alias for predict.kde
), rkde
computes a random sample of size n
.
Silverman, B. (1986) Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC. London.
set.seed(8192) x <- rnorm.mixt(n=10000, mus=0, sigmas=1, props=1) fhat <- kde(x=x) p1 <- pkde(fhat=fhat, q=c(-1, 0, 0.5)) qkde(fhat=fhat, p=p1) y <- rkde(fhat=fhat, n=100) x <- rmvnorm.mixt(n=10000, mus=c(0,0), Sigmas=invvech(c(1,0.8,1))) fhat <- kde(x=x) y <- rkde(fhat=fhat, n=1000) fhaty <- kde(x=y) plot(fhat) plot(fhaty, add=TRUE, col=2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.