Get / Set value labels
Get / Set value labels
val_labels(x, prefixed = FALSE) val_labels(x) <- value val_label(x, v, prefixed = FALSE) val_label(x, v) <- value set_value_labels(.data, ..., .labels = NA, .strict = TRUE) add_value_labels(.data, ..., .strict = TRUE) remove_value_labels(.data, ..., .strict = TRUE)
x |
A vector or a data.frame |
prefixed |
Should labels be prefixed with values? |
value |
A named vector for |
v |
A single value. |
.data |
a data frame |
... |
name-value pairs of value labels (see examples) |
.labels |
value labels to be applied to the data.frame,
using the same syntax as |
.strict |
should an error be returned if some labels
doesn't correspond to a column of |
val_labels()
will return a named vector.
val_label()
will return a single character string.
set_value_labels()
, add_value_labels()
and remove_value_labels()
will return an updated
copy of .data
.
set_value_labels()
, add_value_labels()
and remove_value_labels()
could be used with dplyr syntax.
While set_value_labels()
will replace the list of value labels,
add_value_labels()
and remove_value_labels()
will update that list (see examples).
v <- labelled(c(1,2,2,2,3,9,1,3,2,NA), c(yes = 1, no = 3, "don't know" = 9)) val_labels(v) val_labels(v, prefixed = TRUE) val_label(v, 2) val_label(v, 2) <- 'maybe' val_label(v, 9) <- NULL val_labels(v) <- NULL if (require(dplyr)) { # setting value labels df <- tibble(s1 = c("M", "M", "F"), s2 = c(1, 1, 2)) %>% set_value_labels(s1 = c(Male = "M", Female = "F"), s2 = c(Yes = 1, No = 2)) val_labels(df) # updating value labels df <- df %>% add_value_labels(s2 = c(Unknown = 9)) df$s2 # removing a value labels df <- df %>% remove_value_labels(s2 = 9) df$s2 # removing all value labels df <- df %>% set_value_labels(s2 = NULL) df$s2 }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.