Compute external model metric(s)
Compute external model metric(s)
## S4 method for signature 'lcModel,lcModel' externalMetric(object, object2, name, ...) ## S4 method for signature 'lcModels,missing' externalMetric(object, object2, name = "adjustedRand") ## S4 method for signature 'lcModels,character' externalMetric(object, object2 = "adjustedRand") ## S4 method for signature 'lcModels,lcModel' externalMetric(object, object2, name, drop = TRUE) ## S4 method for signature 'list,lcModel' externalMetric(object, object2, name, drop = TRUE)
object |
The |
object2 |
The other |
name |
The name(s) of the metric(s) to compute. |
... |
Additional arguments. |
drop |
Whether to return a |
For externalMetric(lcModel, lcModel)
: A numeric
vector of the computed metrics.
A named numeric
vector containing the computed model metrics.
For externalMetric(lcModels)
: A distance matrix of class dist representing
the pairwise comparisons.
For externalMetric(lcModels, name)
: A distance matrix of class dist representing
the pairwise comparisons.
For externalMetric(lcModels, lcModel)
: A named numeric
vector or data.frame
containing the computed model metrics.
For externalMetric(list, lcModel)
: A named numeric
vector or data.frame
containing the computed model metrics.
Desgraupes B (2018). clusterCrit: Clustering Indices. R package version 1.2.8, https://CRAN.R-project.org/package=clusterCrit.
You K (2018). mclustcomp: Measures for Comparing Clusters. R package version 0.3.1, https://CRAN.R-project.org/package=mclustcomp.
Csardi G, Nepusz T (2006). “The igraph software package for complex network research.” InterJournal, Complex Systems. https://igraph.org.
Hubert L, Arabie P (1985). “Comparing Partitions.” Journal of Classification, 2, 193–218. doi: 10.1007/BF01908075.
Revelle W (2019). psych: Procedures for Psychological, Psychometric, and Personality Research. R package version 1.9.12, https://CRAN.R-project.org/package=psych.
Scrucca L, Fop M, Murphy TB, Raftery AE (2016). “mclust 5: clustering, classification and density estimation using Gaussian finite mixture models.” The R Journal, 8, 205–233. https://journal.r-project.org/archive/2016-1/scrucca-fop-murphy-etal.pdf.
Other metric functions:
defineExternalMetric()
,
defineInternalMetric()
,
getExternalMetricDefinition()
,
getExternalMetricNames()
,
getInternalMetricDefinition()
,
getInternalMetricNames()
,
metric()
data(latrendData) model1 <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData) model2 <- latrend(lcMethodLcmmGMM(fixed = Y ~ Time, mixture = ~ Time, id = "Id", time = "Time"), latrendData) ari <- externalMetric(model1, model2, 'adjustedRand')
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.