custom interface
custom interface
## S4 method for signature 'lcMethodCustom' getName(object) ## S4 method for signature 'lcMethodCustom' getShortName(object) ## S4 method for signature 'lcMethodCustom' prepareData(method, data, verbose) ## S4 method for signature 'lcMethodCustom' fit(method, data, envir, verbose) ## S4 method for signature 'lcModelCustom' getName(object, ...) ## S4 method for signature 'lcModelCustom' getShortName(object, ...) ## S4 method for signature 'lcModelCustom' converged(object, ...) ## S4 method for signature 'lcModelCustom' postprob(object, ...) ## S3 method for class 'lcModelCustom' predict(object, ..., newdata = NULL, what = "mu") ## S4 method for signature 'lcModelCustom' predictPostprob(object, newdata = NULL, ...) ## S4 method for signature 'lcModelCustom' clusterTrajectories(object, at = time(object), ...) ## S4 method for signature 'lcModelCustom' trajectories( object, at = time(object), what = "mu", clusters = trajectoryAssignments(object), ... ) ## S4 method for signature 'lcMethodRandom' getName(object) ## S4 method for signature 'lcMethodRandom' getShortName(object) ## S4 method for signature 'lcMethodRandom' fit(method, data, envir, verbose, ...) ## S4 method for signature 'lcModelPartition' clusterTrajectories(object, at = time(object), ...) ## S4 method for signature 'lcModelPartition' converged(object, ...) ## S4 method for signature 'lcModelPartition' getName(object, ...) ## S4 method for signature 'lcModelPartition' getShortName(object, ...) ## S4 method for signature 'lcModelPartition' postprob(object, ...) ## S4 method for signature 'lcModelStratify' clusterTrajectories(object, at = time(object), ...) ## S4 method for signature 'lcModelStratify' converged(object, ...) ## S4 method for signature 'lcModelStratify' postprob(object, ...) ## S4 method for signature 'lcModelStratify' predictPostprob(object, newdata = NULL, ...)
object |
The object to extract the label from. |
method |
The |
data |
The data, as a |
verbose |
A R.utils::Verbose object indicating the level of verbosity. |
envir |
The |
... |
Additional arguments. |
newdata |
Optional data frame for which to compute the posterior probability. If omitted, the model training data is used. |
what |
The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying |
at |
An optional vector, list or data frame of covariates at which to compute the cluster trajectory predictions. If a vector is specified, this is assumed to be the time covariate. Otherwise, a named list or data frame must be provided. |
clusters |
The cluster assignments for the strata to base the trajectories on. |
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.