Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

interface-custom

custom interface


Description

custom interface

Usage

## S4 method for signature 'lcMethodCustom'
getName(object)

## S4 method for signature 'lcMethodCustom'
getShortName(object)

## S4 method for signature 'lcMethodCustom'
prepareData(method, data, verbose)

## S4 method for signature 'lcMethodCustom'
fit(method, data, envir, verbose)

## S4 method for signature 'lcModelCustom'
getName(object, ...)

## S4 method for signature 'lcModelCustom'
getShortName(object, ...)

## S4 method for signature 'lcModelCustom'
converged(object, ...)

## S4 method for signature 'lcModelCustom'
postprob(object, ...)

## S3 method for class 'lcModelCustom'
predict(object, ..., newdata = NULL, what = "mu")

## S4 method for signature 'lcModelCustom'
predictPostprob(object, newdata = NULL, ...)

## S4 method for signature 'lcModelCustom'
clusterTrajectories(object, at = time(object), ...)

## S4 method for signature 'lcModelCustom'
trajectories(
  object,
  at = time(object),
  what = "mu",
  clusters = trajectoryAssignments(object),
  ...
)

## S4 method for signature 'lcMethodRandom'
getName(object)

## S4 method for signature 'lcMethodRandom'
getShortName(object)

## S4 method for signature 'lcMethodRandom'
fit(method, data, envir, verbose, ...)

## S4 method for signature 'lcModelPartition'
clusterTrajectories(object, at = time(object), ...)

## S4 method for signature 'lcModelPartition'
converged(object, ...)

## S4 method for signature 'lcModelPartition'
getName(object, ...)

## S4 method for signature 'lcModelPartition'
getShortName(object, ...)

## S4 method for signature 'lcModelPartition'
postprob(object, ...)

## S4 method for signature 'lcModelStratify'
clusterTrajectories(object, at = time(object), ...)

## S4 method for signature 'lcModelStratify'
converged(object, ...)

## S4 method for signature 'lcModelStratify'
postprob(object, ...)

## S4 method for signature 'lcModelStratify'
predictPostprob(object, newdata = NULL, ...)

Arguments

object

The object to extract the label from.

method

The lcMethod object.

data

The data, as a data.frame, on which the model will be trained.

verbose

A R.utils::Verbose object indicating the level of verbosity.

envir

The environment in which the lcMethod should be evaluated

...

Additional arguments.

newdata

Optional data frame for which to compute the posterior probability. If omitted, the model training data is used.

what

The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.

at

An optional vector, list or data frame of covariates at which to compute the cluster trajectory predictions. If a vector is specified, this is assumed to be the time covariate. Otherwise, a named list or data frame must be provided.

clusters

The cluster assignments for the strata to base the trajectories on.

See Also


latrend

A Framework for Clustering Longitudinal Data

v1.1.2
GPL (>= 2)
Authors
Niek Den Teuling [aut, cre] (<https://orcid.org/0000-0003-1026-5080>), Steffen Pauws [ctb], Edwin van den Heuvel [ctb], Copyright © 2021 Koninklijke Philips N.V. [cph]
Initial release
2021-04-14

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.