Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

interface-mixtvem

mixtvem interface


Description

mixtvem interface

Usage

## S4 method for signature 'lcMethodMixTVEM'
getName(object)

## S4 method for signature 'lcMethodMixTVEM'
getShortName(object)

## S4 method for signature 'lcMethodMixTVEM'
preFit(method, data, envir, verbose, ...)

## S4 method for signature 'lcMethodMixTVEM'
fit(method, data, envir, verbose, ...)

## S3 method for class 'lcModelMixTVEM'
predict(object, ..., newdata = NULL, what = "mu")

## S4 method for signature 'lcModelMixTVEM'
postprob(object, ...)

## S4 method for signature 'lcModelMixTVEM'
converged(object, ...)

## S3 method for class 'lcModelMixTVEM'
logLik(object, ...)

## S3 method for class 'lcModelMixTVEM'
sigma(object, ...)

## S3 method for class 'lcModelMixTVEM'
coef(object, ...)

Arguments

object

The object to extract the label from.

method

The lcMethod object.

data

The data, as a data.frame, on which the model will be trained.

envir

The environment in which the lcMethod should be evaluated

verbose

A R.utils::Verbose object indicating the level of verbosity.

...

Additional arguments.

newdata

Optional data.frame for which to compute the model predictions. If omitted, the model training data is used. Cluster trajectory predictions are made when ids are not specified.

what

The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.

See Also


latrend

A Framework for Clustering Longitudinal Data

v1.1.2
GPL (>= 2)
Authors
Niek Den Teuling [aut, cre] (<https://orcid.org/0000-0003-1026-5080>), Steffen Pauws [ctb], Edwin van den Heuvel [ctb], Copyright © 2021 Koninklijke Philips N.V. [cph]
Initial release
2021-04-14

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.