Cluster longitudinal data using bootstrapping
Performs bootstrapping, generating samples from the given data at the id level, fitting a lcModel to each sample.
latrendBoot( method, data, samples = 50, seed = NULL, parallel = FALSE, errorHandling = "stop", envir = NULL, verbose = getOption("latrend.verbose") )
method |
The |
data |
A |
samples |
The number of bootstrap samples to evaluate. |
seed |
The seed to use. Optional. |
parallel |
Whether to enable parallel evaluation. See latrend-parallel. |
errorHandling |
Whether to |
envir |
The |
verbose |
The level of verbosity. Either an object of class |
A lcModels
object of length samples
.
Other longitudinal cluster fit functions:
latrendBatch()
,
latrendCV()
,
latrendRep()
,
latrend()
Other validation methods:
createTestDataFolds()
,
createTestDataFold()
,
createTrainDataFolds()
,
latrendCV()
,
lcModel-data-filters
data(latrendData) method <- lcMethodKML("Y", id = "Id", time = "Time") model <- latrendBoot(method, latrendData, samples = 10)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.