Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

lcMethodGCKM

Two-step clustering through linear mixed modeling and k-means


Description

Two-step clustering through linear mixed modeling and k-means.

Usage

lcMethodGCKM(
  formula,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  center = meanNA,
  ...
)

Arguments

formula

Formula, including a random effects component for the trajectory. See lme4::lmer formula syntax.

time

The name of the time variable..

id

The name of the trajectory identifier variable.

nClusters

The number of clusters.

center

Optional function for computing the longitudinal cluster centers, with signature (x).

...

Arguments passed to lme4::lmer. The following external arguments are ignored: data, centers, trace.

See Also

Examples

library(lme4)
data(latrendData)
method <- lcMethodGCKM(Y ~ (Time | Id), id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)

latrend

A Framework for Clustering Longitudinal Data

v1.1.2
GPL (>= 2)
Authors
Niek Den Teuling [aut, cre] (<https://orcid.org/0000-0003-1026-5080>), Steffen Pauws [ctb], Edwin van den Heuvel [ctb], Copyright © 2021 Koninklijke Philips N.V. [cph]
Initial release
2021-04-14

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.