Two-step clustering through linear mixed modeling and k-means
Two-step clustering through linear mixed modeling and k-means.
lcMethodGCKM( formula, time = getOption("latrend.time"), id = getOption("latrend.id"), nClusters = 2, center = meanNA, ... )
formula |
Formula, including a random effects component for the trajectory. See lme4::lmer formula syntax. |
time |
The name of the time variable.. |
id |
The name of the trajectory identifier variable. |
nClusters |
The number of clusters. |
center |
Optional |
... |
Arguments passed to lme4::lmer. The following external arguments are ignored: data, centers, trace. |
Other lcMethod implementations:
lcMethod-class
,
lcMethodAkmedoids
,
lcMethodCrimCV
,
lcMethodCustom
,
lcMethodDtwclust
,
lcMethodFeature
,
lcMethodFunFEM
,
lcMethodKML
,
lcMethodLMKM
,
lcMethodLcmmGBTM
,
lcMethodLcmmGMM
,
lcMethodLongclust
,
lcMethodMclustLLPA
,
lcMethodMixAK_GLMM
,
lcMethodMixtoolsGMM
,
lcMethodMixtoolsNPRM
,
lcMethodRandom
,
lcMethodStratify
library(lme4) data(latrendData) method <- lcMethodGCKM(Y ~ (Time | Id), id = "Id", time = "Time", nClusters = 3) model <- latrend(method, latrendData)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.