Two-step clustering through linear regression modeling and k-means
Two-step clustering through linear regression modeling and k-means
lcMethodLMKM( formula, time = getOption("latrend.time"), id = getOption("latrend.id"), nClusters = 2, standardize = scale, ... )
formula |
A |
time |
The name of the time variable. |
id |
The name of the trajectory identification variable. |
nClusters |
The number of clusters to estimate. |
standardize |
A |
... |
Arguments passed to stats::lm. The following external arguments are ignored: x, data, control, centers, trace. |
Other lcMethod implementations:
lcMethod-class
,
lcMethodAkmedoids
,
lcMethodCrimCV
,
lcMethodCustom
,
lcMethodDtwclust
,
lcMethodFeature
,
lcMethodFunFEM
,
lcMethodGCKM
,
lcMethodKML
,
lcMethodLcmmGBTM
,
lcMethodLcmmGMM
,
lcMethodLongclust
,
lcMethodMclustLLPA
,
lcMethodMixAK_GLMM
,
lcMethodMixtoolsGMM
,
lcMethodMixtoolsNPRM
,
lcMethodRandom
,
lcMethodStratify
data(latrendData) method <- lcMethodLMKM(Y ~ Time, id = "Id", time = "Time", nClusters = 3) model <- latrend(method, latrendData)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.