Specify a random-partitioning method
Creates a model with random cluster assignments according to the random cluster proportions drawn from a Dirichlet distribution.
lcMethodRandom( response, alpha = 10, center = meanNA, time = getOption("latrend.time"), id = getOption("latrend.id"), nClusters = 2, name = "random" )
response |
The name of the response variable. |
alpha |
The Dirichlet parameters. Either |
center |
Optional |
time |
The name of the time variable. |
id |
The name of the trajectory identification variable. |
nClusters |
The number of clusters. |
name |
The name of the method. |
Frigyik BA, Kapila A, Gupta MR (2010). “Introduction to the Dirichlet distribution and related processes.” Technical Report UWEETR-2010-0006, Department of Electrical Engineering, University of Washington.
Other lcMethod implementations:
lcMethod-class
,
lcMethodAkmedoids
,
lcMethodCrimCV
,
lcMethodCustom
,
lcMethodDtwclust
,
lcMethodFeature
,
lcMethodFunFEM
,
lcMethodGCKM
,
lcMethodKML
,
lcMethodLMKM
,
lcMethodLcmmGBTM
,
lcMethodLcmmGMM
,
lcMethodLongclust
,
lcMethodMclustLLPA
,
lcMethodMixAK_GLMM
,
lcMethodMixtoolsGMM
,
lcMethodMixtoolsNPRM
,
lcMethodStratify
data(latrendData) method <- lcMethodRandom(response = "Y", id = "Id", time = "Time") model <- latrend(method, latrendData) # uniform clusters method <- lcMethodRandom(alpha = 1e3, nClusters = 3, response = "Y", id = "Id", time = "Time") # single large cluster method <- lcMethodRandom(alpha = c(100, 1, 1, 1), nClusters = 4, response = "Y", id = "Id", time = "Time")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.