lcModel predictions
Predicts the expected trajectory observations at the given time for each cluster.
## S3 method for class 'lcModel' predict(object, newdata = NULL, what = "mu", ...)
object |
The |
newdata |
Optional |
what |
The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying |
... |
Additional arguments. |
Subclasses of lcModel
should preferably implement predictForCluster
instead of overriding predict.lcModel
in order to benefit from standardized error checking and output handling.
If newdata
specifies the cluster membership; a data.frame
of cluster-specific predictions. Otherwise, a list
of data.frame
of cluster-specific predictions is returned.
Other model-specific methods:
clusterTrajectories()
,
coef.lcModel()
,
converged()
,
deviance.lcModel()
,
df.residual.lcModel()
,
fitted.lcModel()
,
lcModel-class
,
logLik.lcModel()
,
model.frame.lcModel()
,
nobs.lcModel()
,
postprob()
,
predictAssignments()
,
predictForCluster()
,
predictPostprob()
,
residuals.lcModel()
,
sigma.lcModel()
,
time.lcModel()
,
trajectories()
data(latrendData) model <- latrend(lcMethodLcmmGMM( fixed = Y ~ Time, mixture = ~ Time, id = "Id", time = "Time"), latrendData) predFitted <- predict(model) # same result as fitted(model) # Cluster trajectory of cluster A predCluster <- predict(model, newdata = data.frame(Cluster = "A", Time = time(model))) # Prediction for id S1 given cluster A membership predId <- predict(model, newdata = data.frame(Cluster = "A", Id = "S1", Time = time(model))) # Prediction matrix for id S1 for all clusters predIdAll <- predict(model, newdata = data.frame(Id = "S1", Time = time(model)))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.