Polychoric, polyserial and Pearson correlations
Fit an unrestricted model to compute polychoric, polyserial and/or Pearson correlations.
lavCor(object, ordered = NULL, group = NULL, missing = "listwise", ov.names.x = NULL, se = "none", test = "none", estimator = "two.step", baseline = FALSE, ..., cor.smooth = FALSE, cor.smooth.tol = 1e-06, output = "cor")
object |
Either a |
ordered |
Character vector. Only used if |
group |
Only used if |
missing |
If |
ov.names.x |
Only used if |
se |
Only used if |
test |
Only used if output is |
estimator |
If |
baseline |
Only used if output is |
... |
Optional parameters that are passed to the |
cor.smooth |
Logical. Only used if |
cor.smooth.tol |
Numeric. Smallest eigenvalue used when reconstructing the correlation matrix after an eigenvalue decomposition. |
output |
If |
This function is a wrapper around the lavaan
function,
but where the model is defined as the unrestricted model. The
following free parameters are included: all covariances/correlations among
the variables, variances for continuous variables, means for continuous
variables, thresholds for ordered variables, and if exogenous variables
are included (ov.names.x
is not empty) while some variables
are ordered, also the regression slopes enter the model.
By default, if output = "cor"
or output = "cov"
, a symmetric
matrix (of class "lavaan.matrix.symmetric"
, which only affects the
way the matrix is printed). If output = "th"
, a named vector of
thresholds. If output = "fit"
or output = "lavaan"
,
an object of class lavaan
.
Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44(4), 443-460.
Olsson, U., Drasgow, F., & Dorans, N. J. (1982). The polyserial correlation coefficient. Psychometrika, 47(3), 337-347.
# Holzinger and Swineford (1939) example HS9 <- HolzingerSwineford1939[,c("x1","x2","x3","x4","x5", "x6","x7","x8","x9")] # Pearson correlations lavCor(HS9) # ordinal version, with three categories HS9ord <- as.data.frame( lapply(HS9, cut, 3, labels = FALSE) ) # polychoric correlations, two-stage estimation lavCor(HS9ord, ordered=names(HS9ord)) # thresholds only lavCor(HS9ord, ordered=names(HS9ord), output = "th") # polychoric correlations, with standard errors lavCor(HS9ord, ordered=names(HS9ord), se = "standard", output = "est") # polychoric correlations, full output fit.un <- lavCor(HS9ord, ordered=names(HS9ord), se = "standard", output = "fit") summary(fit.un)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.