Plot of predicted trajectories and link functions
This function provides the class-specific predicted trajectories stemmed
from a hlme
, lcmm
, multlcmm
or Jointlcmm
object.
## S3 method for class 'predictL' plot(x, legend.loc = "topright", legend, add = FALSE, shades = FALSE, ...) ## S3 method for class 'predictY' plot(x, outcome = 1, legend.loc = "topright", legend, add = FALSE, shades = FALSE, ...) ## S3 method for class 'predictYcond' plot(x, legend.loc = "topleft", legend, add = FALSE, shades = TRUE, ...)
x |
an object inheriting from classes |
legend.loc |
keyword for the position of the legend from the list
|
legend |
character or expression to appear in the legend. If no legend
should be added, |
add |
logical indicating if the curves should be added to an existing plot. Default to FALSE. |
shades |
logical indicating if confidence intervals should be represented with shades. Default to FALSE, the confidence intervals are represented with dotted lines. |
... |
other parameters to be passed through to plotting functions or to legend |
outcome |
for |
Cecile Proust-Lima, Benoit Liquet and Viviane Philipps
################# Prediction from linear latent class model ## fitted model m<-lcmm(Y~Time*X1,mixture=~Time,random=~Time,classmb=~X2+X3, subject='ID',ng=2,data=data_hlme,B=c(0.41,0.55,-0.18,-0.41, -14.26,-0.34,1.33,13.51,24.65,2.98,1.18,26.26,0.97)) ## newdata for predictions plot newdata<-data.frame(Time=seq(0,5,length=100), X1=rep(0,100),X2=rep(0,100),X3=rep(0,100)) plot(predictL(m,newdata,var.time="Time"),legend.loc="right",bty="l") ## data from the first subject for predictions plot firstdata<-data_hlme[1:3,] plot(predictL(m,firstdata,var.time="Time"),legend.loc="right",bty="l") ## Not run: ################# Prediction from a joint latent class model ## fitted model - see help of Jointlcmm function for details on the model m3 <- Jointlcmm(fixed= Ydep1~Time*X1,mixture=~Time,random=~Time, classmb=~X3,subject='ID',survival = Surv(Tevent,Event)~X1+mixture(X2), hazard="3-quant-splines",hazardtype="PH",ng=3,data=data_lcmm, B=c(0.7576, 0.4095, -0.8232, -0.2737, 0, 0, 0, 0.2838, -0.6338, 2.6324, 5.3963, -0.0273, 1.398, 0.8168, -15.041, 10.164, 10.2394, 11.5109, -2.6219, -0.4553, -0.6055, 1.473, -0.0383, 0.8512, 0.0389, 0.2624, 1.4982)) # class-specific predicted trajectories #(with characteristics of subject ID=193) data <- data_lcmm[data_lcmm$ID==193,] plot(predictY(m3,newdata=data,var.time="Time"),bty="l") ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.