Calculation of the optimal number of neighbours.
Calculates of optimal number of neighbours by using the algorithm proposed by Kayo (see Ref.). Therefore the LLE alorithm is performed for every k-neighbourhood size.
calc_k(X, m, kmin=1, kmax=20, plotres=TRUE, parallel=FALSE, cpus=2, iLLE=FALSE)
X |
matrix object containing the input data. |
m |
intrinsic dimension of the data. |
kmin |
minimal value of k. |
kmax |
maximal value of k. |
plotres |
a logical values indicating wheather to plot the result. |
parallel |
a logical values indicating wheather to use parallel computation on multiple cpu cores. See snowfall. |
cpus |
number of cpus cores used for parallel computation. |
iLLE |
a logical values indicating wheater to use improved LLE (very CPU intensive). See |
Since the calculation of the optimal number of neighbours m is a step that is normally applied before the execution of LLE itself, the intrinsic dimension may be unknown. In this case, a good guess is sufficient. If no good estimation can be made the largest plausible value should be chosen.
res |
dataframe containing the number of neighbours and the calculated parameter ρ. The number of neighbours belonging to the smallest value of ρ should be chosen. |
Locally linear embedding algorithm - extensions and applications / Olga Kayo / Universitatis Ouluensis, Oulu, Finland / 2006
## Not run: data( lle_scurve_data ) X <- lle_scurve_data calc_k( X, 2, 1, 15 ) data( lle_scurve_data ) X <- lle_scurve_data calc_k( X, 2, 1, 15, FALSE, TRUE, 4 ) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.