Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

confint.merMod

Compute Confidence Intervals for Parameters of a [ng]lmer Fit


Description

Compute confidence intervals on the parameters of a *lmer() model fit (of class"merMod").

Usage

## S3 method for class 'merMod'
confint(object, parm, level = 0.95,
	method = c("profile", "Wald", "boot"), zeta,
	nsim = 500,
        boot.type = c("perc","basic","norm"),
        FUN = NULL, quiet = FALSE,
	oldNames = TRUE, ...)
## S3 method for class 'thpr'
confint(object, parm, level = 0.95,
        zeta, non.mono.tol=1e-2,
	...)

Arguments

object

a fitted [ng]lmer model or profile

parm

parameters for which intervals are sought. Specified by an integer vector of positions, character vector of parameter names, or (unless doing parametric bootstrapping with a user-specified bootstrap function) "theta_" or "beta_" to specify variance-covariance or fixed effects parameters only: see the which parameter of profile.

level

confidence level < 1, typically above 0.90.

method

a character string determining the method for computing the confidence intervals.

zeta

(for method = "profile" only:) likelihood cutoff (if not specified, as by default, computed from level).

nsim

number of simulations for parametric bootstrap intervals.

FUN

bootstrap function; if NULL, an internal function that returns the fixed-effect parameters as well as the random-effect parameters on the standard deviation/correlation scale will be used. See bootMer for details.

boot.type

bootstrap confidence interval type, as described in boot.ci. (Methods ‘stud’ and ‘bca’ are unavailable because they require additional components to be calculated.)

quiet

(logical) suppress messages about computationally intensive profiling?

oldNames

(logical) use old-style names for variance-covariance parameters, e.g. ".sig01", rather than newer (more informative) names such as "sd_(Intercept)|Subject"? (See signames argument to profile).

non.mono.tol

tolerance for detecting a non-monotonic profile and warning/falling back to linear interpolation

...

additional parameters to be passed to profile.merMod or bootMer, respectively.

Details

Depending on the method specified, confint() computes confidence intervals by

"profile":

computing a likelihood profile and finding the appropriate cutoffs based on the likelihood ratio test;

"Wald":

approximating the confidence intervals (of fixed-effect parameters only; all variance-covariance parameters CIs will be returned as NA) based on the estimated local curvature of the likelihood surface;

"boot":

performing parametric bootstrapping with confidence intervals computed from the bootstrap distribution according to boot.type (see bootMer, boot.ci).

Value

a numeric table (matrix with column and row names) of confidence intervals; the confidence intervals are computed on the standard deviation scale.

Note

The default method "profile" amounts to

confint(profile(object, which=parm), signames=oldNames, ...),
            level, zeta)

where the profile method profile.merMod does almost all the computations. Therefore it is typically advisable to store the profile(.) result, say in pp, and then use confint(pp, level=*) e.g., for different levels.

Examples

if (interactive()) {
fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
fm1W <- confint(fm1, method="Wald")# very fast, but ....
fm1W
(fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy))
(CI2 <- confint(fm2, maxpts = 8)) # method = "profile"; 8: to be much faster

} 
if(interactive() || lme4_testlevel() >= 3) {
 ## ~20 seconds, MacBook Pro laptop
 system.time(fm1P <- confint(fm1, method="profile", ## default
                             oldNames = FALSE))
 ## ~ 40 seconds
 system.time(fm1B <- confint(fm1, method="boot",
                             .progress="txt", PBargs=list(style=3)))
} else
  load(system.file("testdata","confint_ex.rda",package="lme4"))
fm1P
fm1B

lme4

Linear Mixed-Effects Models using 'Eigen' and S4

v1.1-26
GPL (>= 2)
Authors
Douglas Bates [aut] (<https://orcid.org/0000-0001-8316-9503>), Martin Maechler [aut] (<https://orcid.org/0000-0002-8685-9910>), Ben Bolker [aut, cre] (<https://orcid.org/0000-0002-2127-0443>), Steven Walker [aut] (<https://orcid.org/0000-0002-4394-9078>), Rune Haubo Bojesen Christensen [ctb] (<https://orcid.org/0000-0002-4494-3399>), Henrik Singmann [ctb] (<https://orcid.org/0000-0002-4842-3657>), Bin Dai [ctb], Fabian Scheipl [ctb] (<https://orcid.org/0000-0001-8172-3603>), Gabor Grothendieck [ctb], Peter Green [ctb] (<https://orcid.org/0000-0002-0238-9852>), John Fox [ctb], Alexander Bauer [ctb], Pavel N. Krivitsky [ctb, cph] (<https://orcid.org/0000-0002-9101-3362>, shared copyright on simulate.formula)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.