Deviance Function in Terms of Standard Deviations/Correlations
The deviance is profiled with respect to the fixed-effects parameters but not with respect to sigma; that is, the function takes parameters for the variance-covariance parameters and for the residual standard deviation. The random-effects variance-covariance parameters are on the standard deviation/correlation scale, not the theta (Cholesky factor) scale.
devfun2(fm, useSc = if(isLMM(fm)) TRUE else NA, transfuns = list(from.chol = Cv_to_Sv, to.chol = Sv_to_Cv, to.sd = identity), ...)
Returns a function that takes a vector of standard deviations and correlations and returns the deviance (or REML criterion). The function has additional attributes
a named vector giving the parameter values at the optimum
the deviance at the optimum, (i.e., not the REML criterion).
the optimal variance-covariance parameters on the “theta” (Cholesky factor) scale
standard errors of fixed effect parameters
Even if the original model was fitted using REML=TRUE
as by default
with lmer()
, this returns the deviance, i.e., the objective
function for maximum (log) likelihood (ML).
For the REML objective function, use getME(fm, "devfun")
instead.
m1 <- lmer(Reaction~Days+(Days|Subject),sleepstudy) dd <- devfun2(m1, useSc=TRUE) pp <- attr(dd,"optimum") ## extract variance-covariance and residual std dev parameters sigpars <- pp[grepl("^\\.sig",names(pp))] all.equal(unname(dd(sigpars)),deviance(refitML(m1)))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.