Class "merMod" of Fitted Mixed-Effect Models
## S3 method for class 'merMod' anova(object, ..., refit = TRUE, model.names=NULL) ## S3 method for class 'merMod' as.function(x, ...) ## S3 method for class 'merMod' coef(object, ...) ## S3 method for class 'merMod' deviance(object, REML = NULL, ...) REMLcrit(object) ## S3 method for class 'merMod' extractAIC(fit, scale = 0, k = 2, ...) ## S3 method for class 'merMod' family(object, ...) ## S3 method for class 'merMod' formula(x, fixed.only = FALSE, random.only = FALSE, ...) ## S3 method for class 'merMod' fitted(object, ...) ## S3 method for class 'merMod' logLik(object, REML = NULL, ...) ## S3 method for class 'merMod' nobs(object, ...) ## S3 method for class 'merMod' ngrps(object, ...) ## S3 method for class 'merMod' terms(x, fixed.only = TRUE, random.only = FALSE, ...) ## S3 method for class 'merMod' vcov(object, correlation = TRUE, sigm = sigma(object), use.hessian = NULL, ...) ## S3 method for class 'merMod' model.frame(formula, fixed.only = FALSE, ...) ## S3 method for class 'merMod' model.matrix(object, type = c("fixed", "random", "randomListRaw"), ...) ## S3 method for class 'merMod' print(x, digits = max(3, getOption("digits") - 3), correlation = NULL, symbolic.cor = FALSE, signif.stars = getOption("show.signif.stars"), ranef.comp = "Std.Dev.", ...) ## S3 method for class 'merMod' summary(object, correlation = , use.hessian = NULL, ...) ## S3 method for class 'summary.merMod' print(x, digits = max(3, getOption("digits") - 3), correlation = NULL, symbolic.cor = FALSE, signif.stars = getOption("show.signif.stars"), ranef.comp = c("Variance", "Std.Dev."), show.resids = TRUE, ...) ## S3 method for class 'merMod' update(object, formula., ..., evaluate = TRUE) ## S3 method for class 'merMod' weights(object, type = c("prior", "working"), ...)
object |
an R object of class |
x |
an R object of class |
fit |
an R object of class |
formula |
in the case of |
refit |
logical indicating if objects of class |
model.names |
character vectors of model names to be used in the anova table. |
scale |
Not currently used (see |
k |
see |
REML |
Logical. If |
fixed.only |
logical indicating if only the fixed effects components (terms or formula elements) are sought. If false, all components, including random ones, are returned. |
random.only |
complement of |
correlation |
(logical)
for |
use.hessian |
(logical) indicates whether to use the
finite-difference Hessian of the deviance function to compute
standard errors of the fixed effects, rather estimating
based on internal information about the inverse of
the model matrix (see
|
sigm |
the residual standard error; by default |
digits |
number of significant digits for printing |
symbolic.cor |
should a symbolic encoding of the fixed-effects correlation
matrix be printed? If so, the |
signif.stars |
(logical) should significance stars be used? |
ranef.comp |
character vector of length one or two, indicating if random-effects parameters should be reported on the variance and/or standard deviation scale. |
show.resids |
should the quantiles of the scaled residuals be printed? |
formula. |
see |
evaluate |
see |
type |
For
|
... |
potentially further arguments passed from other methods. |
The following S3 methods with arguments given above exist (this list is currently not complete):
anova
:returns the sequential decomposition of the contributions of
fixed-effects terms or, for multiple arguments, model comparison statistics.
For objects of class lmerMod
the default behavior is to refit the models
with ML if fitted with REML = TRUE
, this can be controlled via the
refit
argument. See also anova
.
as.function
:returns the deviance function, the same as
lmer(*, devFunOnly=TRUE)
, and mkLmerDevfun()
or mkGlmerDevfun()
, respectively.
coef
:Computes the sum of the random and fixed effects coefficients for each explanatory variable for each level of each grouping factor.
extractAIC
:Computes the (generalized) Akaike An
Information Criterion. If isREML(fit)
, then fit
is
refitted using maximum likelihood.
family
:family
of fitted
GLMM. (Warning: this accessor may not work properly with
customized families/link functions.)
fitted
:Fitted values, given the conditional modes of
the random effects. For more flexible access to fitted values, use
predict.merMod
.
logLik
:Log-likelihood at the fitted value of the
parameters. Note that for GLMMs, the returned value is only
proportional to the log probability density (or distribution) of the
response variable. See logLik
.
model.frame
:returns the frame
slot of merMod
.
model.matrix
:returns the fixed effects model matrix.
nobs
, ngrps
:Number of observations and vector of
the numbers of levels in each grouping factor. See ngrps
.
summary
:Computes and returns a list of summary statistics of the
fitted model, the amount of output can be controlled via the print
method,
see also summary
.
print.summary
:Controls the output for the summary method.
vcov
:Calculate variance-covariance matrix of the fixed
effect terms, see also vcov
.
update
:See update
.
One must be careful when defining the deviance of a GLM. For example, should the deviance be defined as minus twice the log-likelihood or does it involve subtracting the deviance for a saturated model? To distinguish these two possibilities we refer to absolute deviance (minus twice the log-likelihood) and relative deviance (relative to a saturated model, e.g. Section 2.3.1 in McCullagh and Nelder 1989).
With GLMMs however, there is an additional complication involving the
distinction between the likelihood and the conditional likelihood.
The latter is the likelihood obtained by conditioning on the estimates
of the conditional modes of the spherical random effects coefficients,
whereas the likelihood itself (i.e. the unconditional likelihood)
involves integrating out these coefficients. The following table
summarizes how to extract the various types of deviance for a
glmerMod
object:
conditional | unconditional | |
relative | deviance(object) |
NA in lme4 |
absolute | object@resp$aic() |
-2*logLik(object)
|
This table requires two caveats:
If the link function involves a scale parameter
(e.g. Gamma
) then object@resp$aic() - 2 * getME(object,
"devcomp")$dims["useSc"]
is required for the absolute-conditional
case.
If adaptive Gauss-Hermite quadrature is used, then
logLik(object)
is currently only proportional to the
absolute-unconditional log-likelihood.
For more information about this topic see the misc/logLikGLMM
directory in the package source.
resp
:A reference class object for an lme4
response module (lmResp-class
).
Gp
:See getME
.
call
:The matched call.
frame
:The model frame containing all of the variables required to parse the model formula.
flist
:See getME
.
cnms
:See getME
.
lower
:See getME
.
theta
:Covariance parameter vector.
beta
:Fixed effects coefficients.
u
:Conditional model of spherical random effects coefficients.
devcomp
:See getME
.
pp
:A reference class object for an lme4
predictor module (merPredD-class
).
optinfo
:List containing information about the nonlinear optimization.
Other methods for merMod
objects documented elsewhere include:
fortify.merMod
, drop1.merMod
,
isLMM.merMod
, isGLMM.merMod
,
isNLMM.merMod
, isREML.merMod
,
plot.merMod
, predict.merMod
,
profile.merMod
, ranef.merMod
,
refit.merMod
, refitML.merMod
,
residuals.merMod
, sigma.merMod
,
simulate.merMod
, summary.merMod
.
showClass("merMod") methods(class="merMod")## over 30 (S3) methods available ## -> example(lmer) for an example of vcov.merMod()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.