PCA of random-effects covariance matrix
PCA of random-effects variance-covariance estimates
rePCA(x)
x |
a |
Perform a Principal Components Analysis (PCA) of the random-effects variance-covariance estimates from a fitted mixed-effects model. This allows the user to detect and diagnose overfitting problems in the random effects model (see Bates et al. 2015 for details).
a prcomplist
object
Douglas Bates
Douglas Bates, Reinhold Kliegl, Shravan Vasishth, and Harald Baayen. Parsimonious Mixed Models. arXiv:1506.04967 [stat], June 2015. arXiv: 1506.04967.
fm1 <- lmer(Reaction~Days+(Days|Subject), sleepstudy) rePCA(fm1)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.