Fitting Generalized Linear Mixed-Effects Models
Fit a generalized linear mixed-effects model (GLMM). Both fixed
effects and random effects are specified via the model formula
.
glmer(formula, data = NULL, family = gaussian , control = glmerControl() , start = NULL , verbose = 0L , nAGQ = 1L , subset, weights, na.action, offset, contrasts = NULL , mustart, etastart , devFunOnly = FALSE)
formula |
a two-sided linear formula object describing both the
fixed-effects and random-effects part of the model, with the response
on the left of a |
data |
an optional data frame containing the variables named in
|
family |
|
control |
a list (of correct class, resulting from
|
start |
a named list of starting values for the parameters in the
model, or a numeric vector. A numeric |
verbose |
integer scalar. If |
nAGQ |
integer scalar - the number of points per axis for evaluating the adaptive Gauss-Hermite approximation to the log-likelihood. Defaults to 1, corresponding to the Laplace approximation. Values greater than 1 produce greater accuracy in the evaluation of the log-likelihood at the expense of speed. A value of zero uses a faster but less exact form of parameter estimation for GLMMs by optimizing the random effects and the fixed-effects coefficients in the penalized iteratively reweighted least squares step. (See Details.) |
subset |
an optional expression indicating the subset of the rows
of |
weights |
an optional vector of ‘prior weights’ to be used
in the fitting process. Should be |
na.action |
a function that indicates what should happen when the
data contain |
offset |
this can be used to specify an a priori known
component to be included in the linear predictor during
fitting. This should be |
contrasts |
an optional list. See the |
mustart |
optional starting values on the scale of the
conditional mean, as in |
etastart |
optional starting values on the scale of the unbounded
predictor as in |
devFunOnly |
logical - return only the deviance evaluation function. Note that because the deviance function operates on variables stored in its environment, it may not return exactly the same values on subsequent calls (but the results should always be within machine tolerance). |
Fit a generalized linear mixed model, which incorporates both
fixed-effects parameters and random effects in a linear predictor, via
maximum likelihood. The linear predictor is related to the
conditional mean of the response through the inverse link function
defined in the GLM family
.
The expression for the likelihood of a mixed-effects model is an
integral over the random effects space. For a linear mixed-effects
model (LMM), as fit by lmer
, this integral can be
evaluated exactly. For a GLMM the integral must be approximated. The
most reliable approximation for GLMMs
is adaptive Gauss-Hermite quadrature,
at present implemented only for models with
a single scalar random effect. The
nAGQ
argument controls the number of nodes in the quadrature
formula. A model with a single, scalar random-effects term could
reasonably use up to 25 quadrature points per scalar integral.
An object of class merMod
(more specifically,
an object of subclass glmerMod
) for which many
methods are available (e.g. methods(class="merMod")
)
In earlier version of the lme4 package, a method
argument was
used. Its functionality has been replaced by the nAGQ
argument.
glmer.nb
to fit negative binomial GLMMs.
## generalized linear mixed model library(lattice) xyplot(incidence/size ~ period|herd, cbpp, type=c('g','p','l'), layout=c(3,5), index.cond = function(x,y)max(y)) (gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial)) ## using nAGQ=0 only gets close to the optimum (gm1a <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), cbpp, binomial, nAGQ = 0)) ## using nAGQ = 9 provides a better evaluation of the deviance ## Currently the internal calculations use the sum of deviance residuals, ## which is not directly comparable with the nAGQ=0 or nAGQ=1 result. ## 'verbose = 1' monitors iteratin a bit; (verbose = 2 does more): (gm1a <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), cbpp, binomial, verbose = 1, nAGQ = 9)) ## GLMM with individual-level variability (accounting for overdispersion) ## For this data set the model is the same as one allowing for a period:herd ## interaction, which the plot indicates could be needed. cbpp$obs <- 1:nrow(cbpp) (gm2 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd) + (1|obs), family = binomial, data = cbpp)) anova(gm1,gm2) ## glmer and glm log-likelihoods are consistent gm1Devfun <- update(gm1,devFunOnly=TRUE) gm0 <- glm(cbind(incidence, size - incidence) ~ period, family = binomial, data = cbpp) ## evaluate GLMM deviance at RE variance=theta=0, beta=(GLM coeffs) gm1Dev0 <- gm1Devfun(c(0,coef(gm0))) ## compare stopifnot(all.equal(gm1Dev0,c(-2*logLik(gm0)))) ## the toenail oncholysis data from Backer et al 1998 ## these data are notoriously difficult to fit ## Not run: if (require("HSAUR3")) { gm2 <- glmer(outcome~treatment*visit+(1|patientID), data=toenail, family=binomial,nAGQ=20) } ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.