Test of Contrasts
Tests of vector or matrix contrasts for lmer
model fits.
## S3 method for class 'lmerModLmerTest' contest( model, L, rhs = 0, joint = TRUE, collect = TRUE, confint = TRUE, level = 0.95, check_estimability = FALSE, ddf = c("Satterthwaite", "Kenward-Roger", "lme4"), ... ) ## S3 method for class 'lmerMod' contest( model, L, rhs = 0, joint = TRUE, collect = TRUE, confint = TRUE, level = 0.95, check_estimability = FALSE, ddf = c("Satterthwaite", "Kenward-Roger", "lme4"), ... )
model |
a model object fitted with |
L |
a contrast vector or matrix or a list of these.
The |
rhs |
right-hand-side of the statistical test, i.e. the hypothesized value (a numeric scalar). |
joint |
make an F-test of potentially several contrast vectors? If
|
collect |
collect list of tests in a matrix? |
confint |
include columns for lower and upper confidence limits? Applies
when |
level |
confidence level. |
check_estimability |
check estimability of contrasts? Only single DF
contrasts are checked for estimability thus requiring |
ddf |
the method for computing the denominator degrees of freedom.
|
... |
passed to |
If the design matrix is rank deficient, lmer
drops columns for the
aliased coefficients from the design matrix and excludes the corresponding
aliased coefficients from fixef(model)
. When estimability is checked
the original rank-deficient design matrix is recontructed and therefore
L
contrast vectors need to include elements for the aliased
coefficients. Similarly when L
is a matrix, its number of columns
needs to match that of the reconstructed rank-deficient design matrix.
a data.frame
or a list of data.frame
s.
Rune Haubo B. Christensen
data("sleepstudy", package="lme4") fm <- lmer(Reaction ~ Days + I(Days^2) + (1|Subject) + (0+Days|Subject), sleepstudy) # F-test of third coeffcients - I(Days^2): contest(fm, c(0, 0, 1)) # Equivalent t-test: contest(fm, L=c(0, 0, 1), joint=FALSE) # Test of 'Days + I(Days^2)': contest(fm, L=diag(3)[2:3, ]) # Other options: contest(fm, L=diag(3)[2:3, ], joint=FALSE) contest(fm, L=diag(3)[2:3, ], joint=FALSE, collect=FALSE) # Illustrate a list argument: L <- list("First"=diag(3)[3, ], "Second"=diag(3)[-1, ]) contest(fm, L) contest(fm, L, collect = FALSE) contest(fm, L, joint=FALSE, confint = FALSE) contest(fm, L, joint=FALSE, collect = FALSE, level=0.99) # Illustrate testing of estimability: # Consider the 'cake' dataset with a missing cell: data("cake", package="lme4") cake$temperature <- factor(cake$temperature, ordered=FALSE) cake <- droplevels(subset(cake, temperature %in% levels(cake$temperature)[1:2] & !(recipe == "C" & temperature == "185"))) with(cake, table(recipe, temperature)) fm <- lmer(angle ~ recipe * temperature + (1|recipe:replicate), cake) fixef(fm) # The coefficient for recipeC:temperature185 is dropped: attr(model.matrix(fm), "col.dropped") # so any contrast involving this coefficient is not estimable: Lmat <- diag(6) contest(fm, Lmat, joint=FALSE, check_estimability = TRUE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.