Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

confIntBootLogConROC_t0

Function to compute a bootstrap confidence interval for the ROC curve at a given t, based on the log-concave ROC curve


Description

This function computes a bootstrap confidence interval for the ROC curve at a given value false negative fraction (1 - specificity) t. The ROC curve estimate is based on log-concave densities, as discussed in Rufibach (2011).

Usage

confIntBootLogConROC_t0(controls, cases, grid = c(0.2, 0.8), conf.level = 0.95, 
M = 1000, smooth = TRUE, output = TRUE)

Arguments

cases

Values of the continuous variable for the cases.

controls

Values of the continuous variable for the controls.

grid

Values of 1 - specificity where confidence intervals should be computed at (may be a vector).

conf.level

Confidence level of confidence interval.

M

Number of bootstrap replicates.

smooth

Logical. Compute confidence interval also for ROC curve estimate based on smoothed log-concave densities.

output

Logical. Show progress of computations?

Value

A list containing the following elements:

qs

data.frame with the columns t (false positive fractions where confidence interval is computed at) and the confidence intervals for the ROC curve at grid, based on the log-concave density estimate.

boot.mat

Bootstrap samples for the ROC curve based on the log-concave density estimate.

qs.smooth

If smooth = TRUE, same as qs but for the ROC curve based on the smooth log-concave density estimate.

boot.mat.smooth

If smooth = TRUE, bootstrap samples for the ROC curve based on the smoothed log-concave density estimate.

Note

The confidence intervals are only valid if observations are independent, i.e. eacht patient only contributes one measurement, e.g.

Author(s)

References

The reference for computation of these bootstrap confidence intervals is:

Rufibach, K. (2012). A smooth ROC curve estimator based on log-concave density estimates. Int. J. Biostat., 8(1), 1–29.

The bootstrap competitor based on the empirical ROC curve is described in:

Zhou, X.H. and Qin, G. (2005). Improved confidence intervals for the sensitivity at a fixed level of specificity of a continuous-scale diagnostic test. Statist. Med., 24, 465–477.

See Also

The ROC curve based on log-concave density estimates can be computed using logConROC. In the example below we analyze the pancreas data.

Examples

## Not run: 
## ROC curve for pancreas data 
data(pancreas)
status <- factor(pancreas[, "status"], levels = 0:1, labels = c("healthy", "diseased"))
var <- log(pancreas[, "ca199"])
cases <- var[status == "diseased"]
controls <- var[status == "healthy"]

## compute confidence intervals
res <- confIntBootLogConROC_t0(controls, cases, grid = c(0.2, 0.8), conf.level = 0.95, 
    M = 1000, smooth = TRUE, output = TRUE)
res

## End(Not run)

logcondens

Estimate a Log-Concave Probability Density from Iid Observations

v2.1.5
GPL (>= 2)
Authors
Kaspar Rufibach <kaspar.rufibach@gmail.com> and Lutz Duembgen <duembgen@stat.unibe.ch>
Initial release
2016-07-11

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.