Gradient and Diagonal of Hesse Matrix of Quadratic Approximation to Log-Likelihood Function L
Computes gradient and diagonal of the Hesse matrix w.r.t. to η of a quadratic approximation to the reparametrized original log-likelihood function
L(φ) = ∑_{i=1}^m w_i φ(x_i) - int_{-∞}^{∞} exp(φ(t)) dt.
where L is parametrized via
η(φ) = (φ_1, (η_1 + ∑_{j=2}^i (x_i-x_{i-1}) η_i)_{i=2}^m).
φ: vector (φ(x_i))_{i=1}^m representing concave, piecewise linear function φ,
η: vector representing successive slopes of φ.
quadDeriv(dx, w, eta)
dx |
Vector (0, x_i-x_{i-1})_{i=2}^m. |
w |
Vector of weights as in |
eta |
Vector η. |
m \times 2 matrix. First column contains gradient and second column diagonal of Hesse matrix.
This function is not intended to be invoked by the end user.
Kaspar Rufibach, kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
quadDeriv
is used by the function icmaLogCon
.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.