Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

logistf.control

Control Parameters for logistf


Description

Sets parameters for Newton-Raphson iteration in Firth's penalized-likelihood logistic regression.

Usage

logistf.control(
  maxit = 25,
  maxhs = 5,
  maxstep = 5,
  lconv = 1e-05,
  gconv = 1e-05,
  xconv = 1e-05,
  collapse = TRUE
)

Arguments

maxit

The maximum number of iterations

maxhs

The maximum number of step-halvings in one iteration. The increment of the beta vector within one iteration is divided by 2 if the new beta leads to a decrease in log likelihood.

maxstep

Specifies the maximum step size in the beta vector within one iteration.

lconv

Specifies the convergence criterion for the log likelihood.

gconv

Specifies the convergence criterion for the first derivative of the log likelihood (the score vector).

xconv

Specifies the convergence criterion for the parameter estimates.

collapse

If TRUE, evaluates all unique combinations of x and y and collapses data set.

Details

logistf.control() is used by logistf and logistftest to set control parameters to default values. Different values can be specified, e. g., by logistf(..., control= logistf.control(maxstep=1)).

Value

maxit

The maximum number of iterations

maxhs

The maximum number of step-halvings in one iteration. The increment of the beta vector within one iteration is divided by 2 if the new beta leads to a decrease in log likelihood.

maxstep

Specifies the maximum step size in the beta vector within one iteration.

lconv

Specifies the convergence criterion for the log likelihood.

gconv

Specifies the convergence criterion for the first derivative of the log likelihood (the score vector).

xconv

Specifies the convergence criterion for the parameter estimates.

collapse

If TRUE, evaluates all unique combinations of x and y and collapses data set.

Author(s)

Georg Heinze

Examples

data(sexagg)
fit2<-logistf(case ~ age+oc+vic+vicl+vis+dia, data=sexagg, weights=COUNT, 
    control=logistf.control(maxstep=1))
summary(fit2)

logistf

Firth's Bias-Reduced Logistic Regression

v1.24
GPL
Authors
Georg Heinze [aut, cre], Meinhard Ploner [aut], Daniela Dunkler [ctb], Harry Southworth [ctb], Lena Jiricka [aut]
Initial release
2020-09-10

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.